Biosynthesis of nanoparticles by fungus Monacrosporium thaumasium and its action on egg masses of the snail Biomphalaria glabrata

Document Type : Research Article


1 Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa - MG, Brasil

2 Departamento de Física, Universidade Federal de Viçosa, Viçosa - MG, Brasil

3 Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa - MG, Brasil


Nematophagous fungi are widely utilized for biological control against both helminths and their intermediate hosts. This study investigates the fungus Monacrosporium thaumasium's potential in synthesizing silver nanoparticles (AgNPs). The efficacy of a crude extract from an M. thaumasium isolate (strain NF34) combined with silver nitrate (AgNO3) was tested on egg masses of Biomphalaria glabrata, serving as a model for embryotoxicity. The experiment followed a completely randomized design, with treatments containing AgNPs (in various proportions) and a control group with dechlorinated water maintained at 25 °C for ten days. Results indicate that M. thaumasium effectively produces AgNPs, causing 100% inhibition in exposed snail egg masses. The experimental results indicate that the fungus exhibits a potential molecular mechanism for nanoparticle formation, along with demonstrating embryotoxic activity in snail egg masses. These findings underscore the importance of further investigating this action and the underlying mechanism to provide potential applications in biological control.

Graphical Abstract

Biosynthesis of nanoparticles by fungus Monacrosporium thaumasium and its action on egg masses of the snail Biomphalaria glabrata


  • AgNPs exhibited potential molluscicidal activity against Biomphalaria glabrata snails, hindering hatching and the complete development of the organism's stages.
  • Varied sizes of AgNPs demonstrated an ability to adhere and be absorbed by the snail surface, causing membrane permeability, cell death, and disrupting the life cycle of B. glabrata.
  • Monacrosporium thaumasium, known for the predation of nematodes, demonstrated its capability to biosynthesize AgNPs.


Main Subjects

Copyright © 2024 The Author(s). Published by IROST.

[1] Colley, D. G., Andros, T. S., & Campbell, C. H. (2017). Schistosomiasis Is More Prevalent Than Previously Thought: What Does It Mean for Public Health Goals, Policies, Strategies, Guidelines and Intervention Programs? Infectious Diseases of Poverty, 6(1), 63.
[2] Ministério da Saúde (2022). Esquistossomose.
[3] Crellen, T., Allan, F., David, S., Durrant, C., Huckvale, T., Holroyd, N., Emery, A. M., Rollinson, D., Aanensen, D. M., Berriman, M., Webster, J. P., & Cotton, J. A. (2016). Whole Genome Resequencing of The Human Parasite Schistosoma mansoni Reveals Population History and Effects of Selection. Scientific Reports, 6(1), 20954.
[4] Medeiros, C., Scholte, R. G. C., D’ávila, S., Caldeira, R. L., & Carvalho, O. dos S. (2014). Spatial Distribution of Lymnaeidae (Mollusca, Basommatophora), Intermediate Host of Fasciola Hepatica Linnaeus, 1758 (Trematoda, Digenea) in Brazil. Revista Do Instituto de Medicina Tropical de São Paulo, 53(3), 235-252.
[5] World Health Organization (WHO) (2002). Prevention and Control of Schistosomiasis and Soil-Transmitted Helminthiasis. In World Health Organization - Technical Report Series (Issue 912).
[6] Teles, H. M., & Marques, C. C. (1989). Estivação de Biomphalaria tenagophila (Pulmonata, Planorbidae). Revista de Saude Publica, 23(1), 76-78.
[7] Braga, F. R., Mendoza De Gives, P., Paz Silva, A., Soares, F. E. D. F., & Araújo, J. V. De. (2014). Zoonotic Neglected Tropical Diseases: New Approaches to Combat Old Enemies. BioMed Research International, 2014, 914248.
[8] Braga, F. R., Araújo, J. V., Silva, A. R., Carvalho, R. O., Araujo, J. M., Ferreira, S. R., & Carvalho, G. R. (2010). Viability of The Nematophagous Fungus Pochonia chlamydosporia after Passage through The Gastrointestinal Tract of Horses. Veterinary Parasitology, 194(3-4), 264-268.
[9] Santos-Amaral, L., Tunholi-Alves, V. M., Castro, L. S., Tunholi, V. M., Gaudêncio, F., Monteiro, C. de O., Couto-Chambarelli, M. C. M. do, Pinheiro, J., & Freire-Martins, I. V. (2022). Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae), Isolate Hp88, Induces Reproductive And Physiological Alterations in Biomphalaria glabrata (Gastropoda: Planorbidae): An Alternative for Biological Control of Schistosomiasis. Acta Tropica, 230, 106396.
[10] Frassy, L. N., Braga, F. R., Silva, A. R. e, Araújo, J. V. de, Ferreira, S. R., & Freitas, L. G. de. (2010). Destruição de ovos de Toxocara canis pelo fungo nematófago Pochonia chlamydosporia. Revista Da Sociedade Brasileira de Medicina Tropical, 43(1), 102-104.
[11] da Silva, M. E., de Araújo, J. V., Braga, F. R., Borges, L. A., Soares, F. E. F., Lima, W. dos S., & Guimarães, M. P. (2013). Mycelial Mass Production of Fungi Duddingtonia flagrans and Monacrosporium thaumasium under Different Culture Conditions. BMC Research Notes, 6, 340.
[12] Duarte, G. F., Rodrigues, J., Fernandes, É. K. K., Humber, R. A., & Luz, C. (2015). New Insights into The Amphibious Life of Biomphalaria glabrata And Susceptibility of Its Egg Masses to Fungal Infection. Journal of Invertebrate Pathology, 125, 31-36.
[13] Castro, L. S., Martins, I. V. F., Tunholi Alves, V. M., de Araújo, J. V., Tunholi-Alves, V. M., Bittencourt, V. R. E. P., Tunholi, V. M., de Araújo, J. V., Tunholi-Alves, V. M., & Bittencourt, V. R. E. P. (2019). Ovicidal Potential of Pochonia chlamydosporia Isolate Pc-10 (Ascomycota: Sordariomycetes) on Egg Masses of The Snail Pseudosuccinea columella (Mollusca: Gastropoda). Journal of Invertebrate Pathology, 166(1), 107212.
[14] Madakka, M., Jayaraju, N., & Rajesh, N. (2018). Mycosynthesis of Silver Nanoparticles And Their Characterization. MethodsX, 5, 20-29.
[15] Mota, M. D. A., Campos, A. K., De Araújo, J. V., & Araújo, J. V. de. (2003). Controle Biológico de Helmintos Parasitos de Animais: Estágio Atual e Perspectivas Futuras. Pesquisa Veterinaria Brasileira, 23(3), 93-100.
[16] Yang, J., Liang, L., Zou, C.-G. C., & Zhang, K.-Q. (2014). Molecular Mechanism of Nematophagous Fungi Infection of Nematodes. In K. Q. Zhang & K. D. Hyde (Eds.), Nematode-Trapping Fungi. Fungal Diversity Research Series, vol 23 (pp. 263-311). Springer, Netherlands.
[17] Jovetic, S., Zhu, Y., Marcone, G. L., Marinelli, F., & Tramper, J. (2010). β-Lactam and Glycopeptide Antibiotics: First and Last Line of Defense?. Trends in Biotechnology, 28(12), 596-604.
[18] Nederberg, F., Zhang, Y., Tan, J. P. K., Xu, K., Wang, H., Yang, C., Gao, S., Guo, X. D., Fukushima, K., & Li, L. (2011). Biodegradable Nanostructures with Selective Lysis of Microbial Membranes. Nature Chemistry, 3(5), 409.
[19] Duran, N., Marcato, P. D., Duran, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic Aspects in The Biogenic Synthesis of Extracellular Metal Nanoparticles by Peptides, Bacteria, Fungi, and Plants. Applied Microbiology and Biotechnology, 90(5), 1609-1624.
[20] Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of Nanoparticles Using Microbes- A Review. Colloids and Surfaces. B, Biointerfaces, 121, 474-483.
[21] Mohanpuria, P., Rana, N., & Yadav, S. (2008). Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. Journal of Nanoparticle Research, 10, 507-517.
[22] Si, G., Shi, W., Li, K., & Ma, Z. (2011). Synthesis of PSS-Capped Triangular Silver Nanoplates with Tunable SPR. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 380(1-3), 257-260.
[23] Ledwith, D., Whelan, A., & Kelly, J. (2007). A Rapid, Straight-Forward Method for Controlling the Morphology of Stable Silver Nanoparticles. Journal of Materials Chemistry, 17, 2459-2464.
[24] Costa Silva, L. P., Pinto Oliveira, J., Keijok, W. J., da Silva, A. R., Aguiar, A. R., Guimarães, M. C. C., Ferraz, C. M., Araújo, J. V., Tobias, F. L., & Braga, F. R. (2017). Extracellular Biosynthesis of Silver Nanoparticles Using The Cell-free Filtrate of Nematophagous fungus Duddingtonia flagrans. International Journal of Nanomedicine, 12, 6373-6381.
[25] Almeida, É. S., de Oliveira, D., & Hotza, D. (2017). Characterization of Silver Nanoparticles Produced by Biosynthesis Mediated by Fusarium oxysporum under Different Processing Conditions. Bioprocess and Biosystems Engineering, 40(9), 1291-1303.
[26] Rubner, A. (1996). Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. In Studies in Mycology, 39, CBS, Baarn, Centraalbureau voor Schimmelcultures.
[27] Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular Biosynthesis of Silver Nanoparticles Using The Fungus Aspergillus Fumigatus. Colloids and Surfaces B: Biointerfaces, 47(2), 160-164.
[28] Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H., & Esposito, E. (2005). Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum Strains. Journal of Nanobiotechnology, 3(1), 8.
[29] Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313-318.
[30] Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium semitectum. Materials Research Bulletin, 43(5), 1164-1170.
[31] Oliveira-Filho, E. C., Muniz, D. H., Carvalho, E. L., Cáceres-Velez, P. R., Fascineli, M. L., Azevedo, R. B., & Grisolia, C. K. (2019). Effects of AgNPs on The Snail Biomphalaria glabrata: Survival, Reproduction and Silver Accumulation. Toxics, 7(1), 12.
[32] Zayed, K. M., Guo, Y.-H., Lv, S., Zhang, Y., & Zhou, X.-N. (2022). Molluscicidal and Antioxidant Activities of Silver Nanoparticles on the Multi-Species of Snail Intermediate Hosts of Schistosomiasis. PLOS Neglected Tropical Diseases, 16(10), e0010667.
[33] Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., Kemner, K. M., Logan, G. A., Summons, R. E., De Stasio, G., Bond, P. L., Lai, B., Kelly, S. D., & Banfield, J. F. (2000). Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria. Science, 290(5497), 1744-1747.
[34] Carvalho, R. O., Araújo, J. V, Braga, F. R., Ferreira, S. R., Araujo, J. M., Silva, A. R., Frassy, L. N., & Alves, C. D. F. (2009). Biological control of Ancylostomosis in Dogs Using The Nematode-Trapping Fungus Monacrosporium thaumasium in Southeastern Brazil. Veterinary Parasitology, 165(1-2), 179-183.
[35] Soares, F. E. F., Braga, F. R., Araújo, J. V, Geniêr, H. L. A., Gouveia, A. S., & Queiroz, J. H. (2013). Nematicidal Activity of Three Novel Extracellular Proteases of The Nematophagous Fungus Monacrosporium sinense. Parasitology Research, 112(4), 1557–1565.
[36] Soares, F. E. F., Queiroz, J. H., Araújo, J. V, Queiroz, P. V., Gouveia, A. S., Braga, G. M. A. M., De Morais, S. M. L., & Braga, F. R. (2015). Statistical Screening for The Chitinase Production by Nematophagous Fungi from Monacrosporium genu. African Journal of Microbiology Research, 9(7), 448-454.