[1] Colley, D. G., Andros, T. S., & Campbell, C. H. (2017). Schistosomiasis Is More Prevalent Than Previously Thought: What Does It Mean for Public Health Goals, Policies, Strategies, Guidelines and Intervention Programs?
Infectious Diseases of Poverty, 6(1), 63.
https://doi.org/10.1186/s40249-017-0275-5[2] Ministério da Saúde (2022).
Esquistossomose.
https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/e/esquistossomose[3] Crellen, T., Allan, F., David, S., Durrant, C., Huckvale, T., Holroyd, N., Emery, A. M., Rollinson, D., Aanensen, D. M., Berriman, M., Webster, J. P., & Cotton, J. A. (2016). Whole Genome Resequencing of The Human Parasite
Schistosoma mansoni Reveals Population History and Effects of Selection.
Scientific Reports, 6(1), 20954.
https://doi.org/10.1038/srep20954[4] Medeiros, C., Scholte, R. G. C., D’ávila, S., Caldeira, R. L., & Carvalho, O. dos S. (2014). Spatial Distribution of Lymnaeidae (Mollusca, Basommatophora), Intermediate Host of
Fasciola Hepatica Linnaeus, 1758 (Trematoda, Digenea) in Brazil.
Revista Do Instituto de Medicina Tropical de São Paulo, 53(3), 235-252.
https://doi.org/10.1590/S0036-46652014000300010[5] World Health Organization (WHO) (2002). Prevention and Control of Schistosomiasis and Soil-Transmitted Helminthiasis. In World Health Organization - Technical Report Series (Issue 912).
https://www.who.int/publications/i/item/WHO-TRS-912
[6] Teles, H. M., & Marques, C. C. (1989). Estivação de
Biomphalaria tenagophila (Pulmonata, Planorbidae).
Revista de Saude Publica, 23(1), 76-78.
https://doi.org/10.1590/s0034-89101989000100010[7] Braga, F. R., Mendoza De Gives, P., Paz Silva, A., Soares, F. E. D. F., & Araújo, J. V. De. (2014). Zoonotic Neglected Tropical Diseases: New Approaches to Combat Old Enemies.
BioMed Research International, 2014, 914248.
https://doi.org/10.1155/2014/914248[8] Braga, F. R., Araújo, J. V., Silva, A. R., Carvalho, R. O., Araujo, J. M., Ferreira, S. R., & Carvalho, G. R. (2010). Viability of The Nematophagous Fungus
Pochonia chlamydosporia after Passage through The Gastrointestinal Tract of Horses.
Veterinary Parasitology, 194(3-4), 264-268.
https://doi.org/10.1016/j.vetpar.2009.11.020[9] Santos-Amaral, L., Tunholi-Alves, V. M., Castro, L. S., Tunholi, V. M., Gaudêncio, F., Monteiro, C. de O., Couto-Chambarelli, M. C. M. do, Pinheiro, J., & Freire-Martins, I. V. (2022).
Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae), Isolate Hp88, Induces Reproductive And Physiological Alterations in
Biomphalaria glabrata (Gastropoda: Planorbidae): An Alternative for Biological Control of Schistosomiasis.
Acta Tropica, 230, 106396.
https://doi.org/10.1016/j.actatropica.2022.106396[10] Frassy, L. N., Braga, F. R., Silva, A. R. e, Araújo, J. V. de, Ferreira, S. R., & Freitas, L. G. de. (2010). Destruição de ovos de
Toxocara canis pelo fungo nematófago
Pochonia chlamydosporia.
Revista Da Sociedade Brasileira de Medicina Tropical, 43(1), 102-104.
https://doi.org/10.1590/S0037-86822010000100024[11] da Silva, M. E., de Araújo, J. V., Braga, F. R., Borges, L. A., Soares, F. E. F., Lima, W. dos S., & Guimarães, M. P. (2013). Mycelial Mass Production of Fungi
Duddingtonia flagrans and
Monacrosporium thaumasium under Different Culture Conditions.
BMC Research Notes, 6, 340.
https://doi.org/10.1186/1756-0500-6-340[12] Duarte, G. F., Rodrigues, J., Fernandes, É. K. K., Humber, R. A., & Luz, C. (2015). New Insights into The Amphibious Life of
Biomphalaria glabrata And Susceptibility of Its Egg Masses to Fungal Infection.
Journal of Invertebrate Pathology, 125, 31-36.
https://doi.org/10.1016/j.jip.2014.12.013[13] Castro, L. S., Martins, I. V. F., Tunholi Alves, V. M., de Araújo, J. V., Tunholi-Alves, V. M., Bittencourt, V. R. E. P., Tunholi, V. M., de Araújo, J. V., Tunholi-Alves, V. M., & Bittencourt, V. R. E. P. (2019). Ovicidal Potential of
Pochonia chlamydosporia Isolate Pc-10 (Ascomycota: Sordariomycetes) on Egg Masses of The Snail
Pseudosuccinea columella (Mollusca: Gastropoda).
Journal of Invertebrate Pathology, 166(1), 107212.
https://doi.org/10.1016/J.JIP.2019.107212[14] Madakka, M., Jayaraju, N., & Rajesh, N. (2018). Mycosynthesis of Silver Nanoparticles And Their Characterization.
MethodsX, 5, 20-29.
https://doi.org/10.1016/j.mex.2017.12.003[15] Mota, M. D. A., Campos, A. K., De Araújo, J. V., & Araújo, J. V. de. (2003). Controle Biológico de Helmintos Parasitos de Animais: Estágio Atual e Perspectivas Futuras.
Pesquisa Veterinaria Brasileira, 23(3), 93-100.
https://doi.org/10.1590/S0100-736X2003000300001[16] Yang, J., Liang, L., Zou, C.-G. C., & Zhang, K.-Q. (2014). Molecular Mechanism of Nematophagous Fungi Infection of Nematodes. In K. Q. Zhang & K. D. Hyde (Eds.),
Nematode-Trapping Fungi. Fungal Diversity Research Series, vol 23 (pp. 263-311). Springer, Netherlands.
https://doi.org/10.1007/978-94-017-8730-7_6[17] Jovetic, S., Zhu, Y., Marcone, G. L., Marinelli, F., & Tramper, J. (2010).
β-Lactam and Glycopeptide Antibiotics: First and Last Line of Defense?.
Trends in Biotechnology, 28(12), 596-604.
https://doi.org/10.1016/j.tibtech.2010.09.004[18] Nederberg, F., Zhang, Y., Tan, J. P. K., Xu, K., Wang, H., Yang, C., Gao, S., Guo, X. D., Fukushima, K., & Li, L. (2011). Biodegradable Nanostructures with Selective Lysis of Microbial Membranes.
Nature Chemistry, 3(5), 409.
https://doi.org/10.1038/nchem.1012[19] Duran, N., Marcato, P. D., Duran, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic Aspects in The Biogenic Synthesis of Extracellular Metal Nanoparticles by Peptides, Bacteria, Fungi, and Plants.
Applied Microbiology and Biotechnology, 90(5), 1609-1624.
https://doi.org/10.1007/s00253-011-3249-8[20] Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of Nanoparticles Using Microbes- A Review.
Colloids and Surfaces. B, Biointerfaces, 121, 474-483.
https://doi.org/10.1016/j.colsurfb.2014.05.027[21] Mohanpuria, P., Rana, N., & Yadav, S. (2008). Biosynthesis of Nanoparticles: Technological Concepts and Future Applications.
Journal of Nanoparticle Research, 10, 507-517.
https://doi.org/10.1007/s11051-007-9275-x[22] Si, G., Shi, W., Li, K., & Ma, Z. (2011). Synthesis of PSS-Capped Triangular Silver Nanoplates with Tunable SPR.
Colloids and Surfaces A : Physicochemical and Engineering Aspects, 380(1-3), 257-260.
https://doi.org/10.1016/j.colsurfa.2011.02.023[23] Ledwith, D., Whelan, A., & Kelly, J. (2007). A Rapid, Straight-Forward Method for Controlling the Morphology of Stable Silver Nanoparticles.
Journal of Materials Chemistry, 17, 2459-2464.
https://doi.org/10.1039/b702141k[24] Costa Silva, L. P., Pinto Oliveira, J., Keijok, W. J., da Silva, A. R., Aguiar, A. R., Guimarães, M. C. C., Ferraz, C. M., Araújo, J. V., Tobias, F. L., & Braga, F. R. (2017). Extracellular Biosynthesis of Silver Nanoparticles Using The Cell-free Filtrate of Nematophagous fungus Duddingtonia flagrans.
International Journal of Nanomedicine, 12, 6373-6381.
https://doi.org/10.2147/IJN.S137703[25] Almeida, É. S., de Oliveira, D., & Hotza, D. (2017). Characterization of Silver Nanoparticles Produced by Biosynthesis Mediated by
Fusarium oxysporum under Different Processing Conditions.
Bioprocess and Biosystems Engineering, 40(9), 1291-1303.
https://doi.org/10.1007/s00449-017-1788-9[26] Rubner, A. (1996). Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. In
Studies in Mycology, 39, CBS, Baarn, Centraalbureau voor Schimmelcultures.
[27] Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular Biosynthesis of Silver Nanoparticles Using The Fungus
Aspergillus Fumigatus.
Colloids and Surfaces B: Biointerfaces, 47(2), 160-164.
https://doi.org/10.1016/j.colsurfb.2005.11.026[28] Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H., & Esposito, E. (2005). Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several
Fusarium oxysporum Strains.
Journal of Nanobiotechnology, 3(1), 8.
https://doi.org/10.1186/1477-3155-3-8[29] Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus
Fusarium oxysporum.
Colloids and Surfaces B: Biointerfaces, 28(4), 313-318.
https://doi.org/10.1016/S0927-7765(02)00174-1[30] Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus
Fusarium semitectum.
Materials Research Bulletin, 43(5), 1164-1170.
https://doi.org/10.1016/j.materresbull.2007.06.020[31] Oliveira-Filho, E. C., Muniz, D. H., Carvalho, E. L., Cáceres-Velez, P. R., Fascineli, M. L., Azevedo, R. B., & Grisolia, C. K. (2019). Effects of AgNPs on The Snail
Biomphalaria glabrata: Survival, Reproduction and Silver Accumulation.
Toxics, 7(1), 12.
https://doi.org/10.3390/toxics7010012[32] Zayed, K. M., Guo, Y.-H., Lv, S., Zhang, Y., & Zhou, X.-N. (2022). Molluscicidal and Antioxidant Activities of Silver Nanoparticles on the Multi-Species of Snail Intermediate Hosts of Schistosomiasis.
PLOS Neglected Tropical Diseases, 16(10), e0010667.
https://doi.org/10.1371/journal.pntd.0010667[33] Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., Kemner, K. M., Logan, G. A., Summons, R. E., De Stasio, G., Bond, P. L., Lai, B., Kelly, S. D., & Banfield, J. F. (2000). Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria.
Science, 290(5497), 1744-1747.
https://doi.org/10.1126/science.290.5497.1744[34] Carvalho, R. O., Araújo, J. V, Braga, F. R., Ferreira, S. R., Araujo, J. M., Silva, A. R., Frassy, L. N., & Alves, C. D. F. (2009). Biological control of Ancylostomosis in Dogs Using The Nematode-Trapping Fungus
Monacrosporium thaumasium in Southeastern Brazil.
Veterinary Parasitology, 165(1-2), 179-183.
https://doi.org/10.1016/j.vetpar.2009.06.024[35] Soares, F. E. F., Braga, F. R., Araújo, J. V, Geniêr, H. L. A., Gouveia, A. S., & Queiroz, J. H. (2013). Nematicidal Activity of Three Novel Extracellular Proteases of The Nematophagous Fungus
Monacrosporium sinense.
Parasitology Research, 112(4), 1557–1565.
https://doi.org/10.1007/s00436-013-3304-8[36] Soares, F. E. F., Queiroz, J. H., Araújo, J. V, Queiroz, P. V., Gouveia, A. S., Braga, G. M. A. M., De Morais, S. M. L., & Braga, F. R. (2015). Statistical Screening for The Chitinase Production by Nematophagous Fungi from
Monacrosporium genu.
African Journal of Microbiology Research, 9(7), 448-454.
https://doi.org/10.5897/AJMR2014.7225