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• AgNPs exhibited potential 
molluscicidal activity against 
Biomphalaria glabrata snails, 
hindering hatching and the complete 
development of the organism's stages.

• Varied sizes of AgNPs demonstrated 
an ability to adhere and be absorbed 
by the snail surface, causing 
membrane permeability, cell death, 
and disrupting the life cycle of B. 
glabrata.

• Monacrosporium thaumasium, 
known for the predation of nematodes, 
demonstrated its capability to 
biosynthesize AgNPs.
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Nematophagous fungi are widely utilized for biological control against both helminths and 
their intermediate hosts. This study investigates the fungus Monacrosporium thaumasium's 
potential in synthesizing silver nanoparticles (AgNPs). The efficacy of a crude extract from an M. 
thaumasium isolate (strain NF34) combined with silver nitrate (AgNO3) was tested on egg masses 
of Biomphalaria glabrata, serving as a model for embryotoxicity. The experiment followed a 
completely randomized design, with treatments containing AgNPs (in various proportions) and a 
control group with dechlorinated water maintained at 25 °C for ten days. Results indicate that M. 
thaumasium effectively produces AgNPs, causing 100% inhibition in exposed snail egg masses. 
The experimental results indicate that the fungus exhibits a potential molecular mechanism for 
nanoparticle formation, along with demonstrating embryotoxic activity in snail egg masses. 
These findings underscore the importance of further investigating this action and the underlying 
mechanism to provide potential applications in biological control.
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1. Introduction 

Schistosomiasis is a public health problem and neglected 
tropical disease caused by Schistosoma mansoni [1]. This 
trematode has an intermediate freshwater-snail host, the 
Biomphalaria spp. In Brazil, the intermediate hosts are 
Biomphalaria glabrata, B. tenagophila, and B. straminea; 
it is estimated that 1.5 million people live close to endemic 
areas [2,3]. According to Medeiros et al. [4], these gastropods 
establish themselves in stagnant waters or lentic courses in 
neotropical areas. In general, to control these gastropods, it is 
necessary not only to treat the parasitized animals chemically 
but also to control the population density of the host molluscs 
[5]; draining flooded areas is not enough, as these organisms 
go into aestivation and can return [6]. 

Studies on biological control have highlighted 
nematophagous as promising in the control of gastrointestinal 
parasites (GIN) [7-11], while other studies have used 
gastropods [12,13]. Among biosystems, fungi have many 
advantages due to their high tolerance to heavy metals, ease 
of scaling, easy biomass handling, recovery, and economic 
viability [14].

The predatory fungus Monacrosporium thaumasium 
belongs to the helminthphagous or nematophagous fungi 
group and has mechanisms of action in the biological control 
of helminths [15]. In addition, nematophagous fungi, when 
in contact with helminth larvae or eggs, produce extra and 
intracellular substances that allow their predation mechanism 
[16]. Understanding its enzymatic characteristics, the use 
of predatory M. thaumasium’s extracellular enzymes, 
particularly its viability to biosynthesis AgPNs for potential 
ovicidal activity, may be one more measure that can be 
applied to biological control.

It is known that most commercially used antimicrobial 
agents, including silver, are biocides for most microorganisms 
relevant to the medical field, including bacteria, fungi, 
and yeasts. The mode of action of these agents consists of 
damaging the cell wall or changing the permeability of the 
cell membrane, denaturing proteins, and inhibiting enzymatic 
activity or lipid synthesis, which are essential mechanisms for 
cell survival [17,18]. However, the reduction mechanism that 
forms silver nanoparticles (Ag+ to Ag0) is still unknown [19] 
due to the fact that different biological agents react differently 
with metallic ions [20]. 

Several microorganisms involved in the biogenic 
production of nanoparticles, including bacteria, fungi, and 
yeast, are capable of synthesizing these compounds through 
their metabolism, that is, the secretion of extracellular 
enzymes [21]. When the synthesis occurs only in chemical 
and generally inorganic elements, three main components 
are needed: a silver salt (generally AgNO3), a reducing agent 

responsible for the chemical transformation of the silver ion 
(generally sodium borohydride), and an agent to control and 
prevent its aggregation [22]. However, when the synthesis 
comes from microorganisms, the reducing agent and stabilizer 
are replaced by molecules produced by the organism itself 
[23]. In this regard, there are prominent predatory fungi, such 
as Duddingtonia flagrans [24], that can biosynthesize silver 
nanoparticles (AgNPs). Among these fungi, Monacrosporium 
thaumasium, a nematophagous fungus, has yet to elucidate its 
mechanism of biosynthesis of AgNPs in the Biomphalaria 
embryotoxic toxicity test (BET).

In this study, the biosynthesis of AgNPs mediated by the 
fungus Monacroporium thaumasium was performed and 
characterized by UV-Vis spectrophotometer, Dynamic light 
scattering, and Scanning electron microscopy. The resulting 
AgNPs were tested on egg masses of Biomphalaria glabrata 
to analyze their efficiency in controlling these snails.

2. Experimental

The fungus, Monacrosporium thaumasium, was provided 
by the Parasitology Laboratory, Department of Veterinary 
Medicine, Federal University of Viçosa, Brazil (DTV/UFV). 

2.1. Culture media for the fungus

The fungus was cultured in PDA medium (Sigma-Aldrich) 
supplemented with 0.5% yeast extract and 2% malt extract 
and incubated in Biochemical Oxygen Demand (BOD) for 
five days at a controlled temperature (28 °C).

2.2. Synthesis of nanoparticles (AgNPs) mediated by the 
fungus Monacrosporium thaumasium

The synthesis of AgNPs was carried out in the Laboratory 
of Metabolism and Fermentation (LMF). Almeida et al.'s  
protocols were followed [25].

After a 5-day growth period for the fungal strain, 10 ± 0.5 g 
of NF34 isolate biomass scraped from the mycelium formed 
by the fungal strain on the PDA solid medium was transferred 
to an Erlenmeyer flask containing 100 ml of distilled water. 

The sample was kept for 72 h at 28 °C in aqueous suspension 
in a horizontal incubator at 120 rpm in the dark.

After the 72 h, the biomass was separated from the 
medium by filtration using a quantitative paper filter with a 
porosity of 25 µm (12.5 cm). After filtration, 1 mM (10-3 M 
or 0.017 g/100 ml) of AgNO3 (silver nitrate) was added to 
the fungal filtrate. Subsequently, the suspension containing 
the fungal filtrate with silver nitrate was kept for five days in 
an incubator in the dark at 28 °C in aqueous suspension in a 
horizontal incubator at 120 rpm.
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After the biosynthesis processes, the suspension was 
stored at a temperature of 4 °C in the dark to prepare for the 
characterization of the reaction medium. The efficiency of the 
biosynthesis was evaluated by observing changes in the color 
tone of the reaction medium.   

2.3. Dynamic light scattering (DLS)

Dynamic light scattering was used to measure the size of 
the silver nanoparticles. Briefly, about 2 ml of the colloidal 
samples containing the silver nanoparticles were first 
transferred to a test tube. Then, the component containing 
the laser light source was immersed in the sample. The 
equipment's software analyzed the frequency of light 
incident on the particles, generating a histogram containing 
the percentages of the different sizes of the nanoparticles. 
The equipment used was a multiangle light scattering 
Brookhaven Co. with a laser He-Ne, 632.8 nm, performed 
at the Laboratory Microfluidic and Complex Fluid (DPF/
UFV). 

2.4. Characterization via spectroscopy in the visible 
ultraviolet region (UV-Vis)

The aliquots containing the nanoparticles were periodically 
removed and subjected to UV-Vis spectroscopy analysis 
using a spectrophotometer (Shimadzu UV–Vis-1501). 
Fluorescence emission measurements were performed 
using a 378 nm Coherent Cube Laser as an excitation source 
and an Ocean Optics USB4000 spectrometer to collect the 
signal from all samples and references. To do so, about 2 
ml of samples containing colloidal silver nanoparticles 
were analyzed in quartz cuvettes. All UV-Vis analyses were 
performed at the Sample Preparation Laboratory (Production 
of Semiconductor Nanostructures and Nanocomposites) - 
UFV.

2.5. Scanning Electron Microscopy (SEM) / Energy 
Dispersive Spectroscopy (EDS) Analysis 

The shape and spatial aspects of the silver nanoparticles 
were characterized by Scanning electron microscopy (SEM) 
acquired by a JEOL JSM-6010/LA microscope equipped 
with an Energy dispersive spectrometry system (EDS)  to 
verify the chemical composition of the silver nanoparticles. 
SEM images and EDS spectra were obtained with a working 
distance of 10 mm and an accelerating voltage of 16 kV. 
All analyses were performed in the Scanning Electron 
Microscopy Laboratory - (DPF/UFV). Samples of silver 
nanoparticles were prepared by dropping them onto a small, 
previously cleaned, and sterilized aluminum stub. The stubs 

were then placed in a desiccator containing silica gel, where 
they remained for 48 h to promote sample drying.

2.6. Obtaining egg masses of Biomphalaria glabrata

The snails used in this study were obtained from the 
Laboratory of Veterinary Helminthology at the Institute 
of Biological Sciences of the Federal University of Minas 
Gerais (UFMG). Generations already kept under laboratory 
conditions were placed in glass aquariums in dechlorinated 
water with artificial aeration, temperature, and ambient 
photoperiod. Such organisms were fed lettuce leaves 
(Lactuca sativa) ad libitum. To obtain the egg masses (Fig. 
1), polystyrene plates (± 4 cm2) were placed inside the 
aquariums to serve as substrates for oviposition.

2.7. Biomphalaria embryotoxic test (BET)

The egg masses were gently collected with the aid of a 
sterile sowing loop and transferred to a glass plate with 
dechlorinated water (new water, but in the same condition as 
the water in the aquarium where the adult snails are found) 
in ratios of  0.5 ml×1 ml, 2 ml×0.5 ml, and 1 ml×1 ml. They 
then built three test tubes containing dechlorinated water and 
egg masses in the above proportions for the control group and 
three more for the treatment group with dechlorinated water, 
egg masses, and AgNPs in the same proportions.

The experiment was arranged in a completely randomized 
design, consisting of three control groups (C1, C2, and C3 
of dechlorinated water and egg mass) and three treatment 
groups (dechlorinated water, egg mass, and AgNPs) in 
triplicate and maintained in the same ambient, light, and 
temperature conditions. The results were expressed as 
mean ± standard deviation. One-way ANOVA tests were 
conducted with one factor: hatchability x treatments, and 
Minitab software (version 18, Minitab Corporation) was 
used to compare means.

Fig. 1. Biomphalaria glabrata egg masses deposited on the 
polystyrene plate.
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water, which may be due to the fungi containing common 
fluorophores, including NAD(P)H, flavin derivatives, 
flavoproteins, and lipofuscins. Moreover, the pigment 
melanin can affect the autofluorescence signal as an internal 
absorbing filter [26].

In Fig. 6, SEM images show the morphology of AgNPS, 
indicating that biosynthesis produces different aggregate 
sizes and dispersed forms [27]. Using the EDS spectra in 
Fig. 6(c), we were able to confirm chemical elements in the 
sample, which established the presence of silver.

Fig. 4. Reactional alteration of suspensions obtained through the 
fungus Monacrosporium thaumasium. (a) Fungal filtrate of NF34 
with distilled water. (b) Fungal filtrate with silver nitrate (AgNO3).

3. Results and disscusion

The fungus M. thaumasium was grown in PDA, malt 
extract, and yeast extract, and after five days of incubation, 
it was possible to see the growth of the mycelium (Fig. 2) 
required to proceed to the stages of biosynthesis of silver 
nanoparticles (AgNPs).

Subsequently, the mycelia obtained from cultivation in 
PDA were weighed and scraped lightly with scalpel blades 
(stainless steel) in a sterile environment and inoculated in 250 
ml Erlenmeyer flasks containing 100 ml of ultrapure water 
(Fig. 3). The flasks were again kept in the same temperature 
conditions and incubated for 72 h to allow new growth in the 
liquid medium.

After the biosynthesis of AgNPs, the nanoparticles were 
subjected to a partial determination of the characteristics of 
this suspension, which would later be used as an agent in BET. 
The biosynthesis of AgNPs was promoted by adding silver 
salt (AgNO3) to the fungal filtrate, thus allowing proteins 
and other biomolecules biosynthesized by Monacrosporium 
thaumasium to act in the bioreduction mechanism of silver 
ions as well as in the stabilization process of nanoparticles.

With regard to the efficiency of fungus-mediated 
biosynthesis, a change in the color of the reaction medium 
(Fig. 4a) was evident when compared to the fungal filtrate 
(Fig. 4b). So, the fungus secretes an extracellular enzyme that 
will probably promote the reduction of silver ions, resulting 
in the formation of metallic silver nanoparticles.

The UV-Vis spectra were recorded from samples in 
cuvettes containing the fungal filtrate with and without the 
addition of AgNO3 (1 mM) and then subjected to optical 
measurements using a UV-Vis spectrophotometer. The 
analysis showed that the surface resonance peak is strongly 
accentuated at around 500 nm (Fig. 5). This result is close to 
biosynthesis by Duddingtonia flagrans [24], another fungus 
with nematophagous activity.

Light emission was observed in only the NF34 sample with 

Fig. 2. Culture plate containing the fungus Monacrosporium 
thaumasium cultivated in PDA culture medium, malt extract, and 
yeast extract at 28 °C after five days incubated in the dark.

Fig. 3. (a) Flask containing 10 g of the fungal mycelium of 
Monacroporium thaumasium in 100 ml of ultrapure distilled water. 
(b) Flask containing fungal filtrate of Monacrosporium thaumasium 
after 72 h of incubation at 28 °C in the dark.

Fig. 5. Recorded normalized UV-visible spectra of biosynthesis of 
silver nanoparticles mediated by Monacrosporium thaumasium.

(a) (b)

(a) (b)
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Dynamic Light Scattering (DLS) is a technique that studies 
the correlation of light intensity scattered by the sample after 
it is hit by an electromagnetic wave. The hydrodynamic radius 
can be obtained, assuming the particles have a spherical 
shape according to the Stokes-Einstein relationship. The 
equipment provides the autocorrelation function, g(2)(τ) - 1. 
Measurements were performed for the detection angles 30°, 
40°, 60°, and 90° as shown in Fig. 7.

Fig. 6. SEM–EDS Micrograph of silver nanoparticles biosynthesized 
using the fungus Monacrosporium thaumasium: (a) 2000x 
magnification; (b) 5000x magnification; and (c) Histogram of 
inorganic and organic components of the AgNPs sample.

Fig. 7. Sample autocorrelation function for the 30°, 40°, 60°, and 
90° scattering angles of the reaction medium obtained through 
the biosynthesis of silver nanoparticles (AgNPs) by the fungus 
Monacrosporium thaumasium. All the curves were fitted by Eq. (1).

Fig. 8. Graph of Γ using the squared scattering vector for the 
scattering angles of 30°, 40°, 60°, and 90° of the reaction medium 
obtained through the biosynthesis of silver nanoparticles (AgNPs) 
by the fungus Monacrosporium thaumasium. The lines are linear 
adjustments to obtain the diffusion coefficient.

(a) (b)

(c)

The results from Fig. 7 were analyzed using Eq. (1). As the 
autocorrelation functions were adjusted, two populations of 
the structures with different sizes were noticed in the solution.

g2(τ) - 1 =  [β1 exp(-Γ1 τ) + β2 exp(-Γ2 τ)]
2          (1)

By fitting Eq. (1), we obtain the Γ1 and Γ2 for the two 
populations related to the decay rate for the two exponential 
equations. The Γ could relate to the diffusion coefficient D 
and the wave vector q through Eq. (2). The coefficients β1 and 
β2 were related to the exponential amplitude.

Γ = D q2              (2)

As seen in the graph of  Γ vs. q2 in Fig. 8, it is possible 
to obtain the diffusion coefficient through a linear fit 
using Eq. (2). The obtained diffusion coefficients and the 
hydrodynamic radius values are shown in the experiment 
conditions: η = 0.891 cP, n = 1.331, and λ = 632.8 nm.

Therefore, this particle has an average hydrodynamic radius 
of 156.45 nm. It was observed that the particles do not have 
a completely spherical shape but rather a small elongation. 
However, this elongation was small, and the emitted signal 
had low intensity and did not favor the characterization, 
making it possible to make measurements for low scattering 
angles like 30° (Fig. 9).

This measurement was performed using the polarizer in 
the horizontal position, so there will only be a signal if the 
particles are not perfectly spherical.

After the characterizations, AgNP toxicity tests were carried 
out in the Biomphalaria glabrata egg masses. The suspension 
containing AgNPs promoted a hatching inhibition rate of 
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et al., verified that the color change occurs due to the reduction 
of Ag+ ions to Ag0 according to the release of extracellular 
enzymes [30]. The findings of this experiment are similar 
to the results found by Oliveira-Filho et al. [31], in which a 
rapid accumulation of the AgNPs suspension was observed 
and interfered with the reproduction of these snails. Tests 
with a 100 μg.ml-1 concentration of AgNPs also obtained a 
100% lethal effect on snails [32].

The intensity of the UV-Vis peak was directly proportional 
to the yield of NP biosynthesis; thus, although it is still not 
fully understood, the current most accepted theory for the 
exact mechanism of AgNPs biosynthesis implies that the 
silver ions generated by the addition of AgNO3 to the fungal 
filtrate require the enzyme nitrate reductase dependent on 
NADPH for its reduction (Ag+ to Ag0) [33]. Given this, 
the enzymatic complex responsible for the bioreduction 
of silver ions was synthesized and released by the fungus 
Monacrosporium thaumasium.

The results of this study are satisfactory in suggesting 
treatments based on AgNPs in egg masses since neither the 
hatching of any snail nor the complete development of the 
stages of this organism was observed. The varied sizes of 
AgNPs demonstrated a potential ability to adhere to and be 
absorbed by the surface of target agents (snails) and induced 
the mortality of these snails, which are intermediate hosts of 
schistosomiasis. As a result, the membrane of these masses 

100% (Fig. 10) in the snails during the 10 days of exposure.
It can be observed that all treatments containing the AgNP 

solution were sensitive to the test compared to the control 
group (Fig. 11).

The biosynthesis of AgNPs was promoted by adding silver 
salt (AgNO3) to the fungal filtrate, thus allowing proteins 
and other biomolecules biosynthesized by Monacrosporium 
thaumasium to act in the bioreduction mechanism of silver 
ions as well as in the stabilization process of nanoparticles.

Evidence of the formation of AgNPs, as demonstrated after 
the addition of silver nitrate (1 mM) to the flask containing 
the fungal filtrate, is demonstrated by the change in color 
of the medium, which changed to a yellowish-brown hue 5 
days after the addition of the salt silver. The appearance of 
this color suggests the formation of silver nanoparticles in 
solution [28,29]. Studies involving other fungi by Basavaraja 

Fig. 9. Autocorrelation function for a scattering angle of 30° and 
with the polarizer positioned horizontally.

Fig. 10. Snail hatchability rate. C1, C2, and C3 – Control group 
with dechlorinated water and egg masses (not exposed to silver 
nanoparticles). T1, T2, and T3 – Exposure treatment with AgNPs in 
egg masses of Biomphalaria glabrata for ten days at 25 °C.

Fig. 11. External aspect of changes in Biomphalaria glabrata egg 
masses. (a, b, and c) Control group-dechlorinated water; (a)-s-
snail (snail); (b, c) mo–egg mass; (d, e, and f) Treated group– (d) 
dechlorinated water and (e, f)-AgNPs; and f) Stage of the snail in the 
trochophore phase (t). Scale = 500 µm.

(a) (b) (c)

(d) (e) (f)
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suffered permeability, causing cell death and revealing that 
AgNPs functioned as molluscicidal activity against B. glabrata.

It is understood that the fungus M. thaumasium acts as 
a predator of nematodes through adhesive networks [34]. 
However, the use of extracellular enzymes from fungi and 
other microorganisms act at different stages that interfere with 
the development of larvae or hatchability [35,36]. Among the 
fungi used as biological controls, the Duddingtonia flagrans 
isolate was also used as NPs and tested on nematodes, 
showing promising results as a biological control [24].

According to Almeida et al., the amount of biomass plays a 
key role in the mechanism of bioreduction of Ag+ ions to Ag0 

[25]. An increase in the amount of biomass in the reaction 
medium allows a higher release of reductase enzymes and 
other proteins responsible both for the bioreduction process 
and also for the stabilization process of silver nanoparticles. 
Therefore, in this present work, these enzymes were found 
to be a suppressor and toxic agent in the egg masses and, 
consequently, in the eggs, due to the Ag ions. However, the 
exact characterization mechanisms of these enzymes and 
their toxicity require further studies.

4. Conclusion

The study demonstrates the potential of utilizing the 
nematophagous fungus Monacrosporium thaumasium in 
synthesizing silver nanoparticles (AgNPs) for biological 
control purposes. By combining a crude extract from M. 
thaumasium with silver nitrate (AgNO3), the experiment 
effectively inhibited egg masses of Biomphalaria glabrata, 
a model for embryotoxicity with 100% effectiveness. This 
suggests a promising avenue for utilizing M. thaumasium-
derived AgNPs in combating both helminths and their 
intermediate hosts. Moreover, the study hints at a potential 
molecular mechanism underlying nanoparticle formation 
by the fungus, highlighting the need for further research 
to elucidate this process and explore its applications in 
biological control strategies.
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