[1] A. Novruzova, M. Ramazanov, A. Chianese, F. Hajiyeva, A. Maharramov, U. Hasanova, Synthesis, structure and optical properties of PP+PbS/CdS hybrid nanocomposites, Chem. Engineer. Trans. 60 (2017) 61-66.
[2] L. Shen, F.Q. Wang, H. Yang, Q.R. Meng, The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend, Polym. Test, 30 (2011) 442-448.
[3] M. Toyonaga, P.C. Kwan, M. Terano, T. Taniike, Well-defined polypropylene/polypropylene-grafted silica nanocomposites: Roles of number and molecular weight of grafted chains on mechanistic reinforcement, Polymers-Basel, 8 (2016) 300.
[4] C. Sharma, R. Dhiman, N. Rokana, H. Panwar, Nanotechnology: An untapped resource for food packaging, Front. Microbiol. 8 (2017) Article ID 1735.
[5] A. Buasri, N. Chaiyut, K. Borrornchettanwat, N. Chantanachi, K. Thanglor, Thermal and mechanical properties of modified CaCO3/PP nanocomposites, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 6 (2012) 689-692.
[6] A.B. Morgan, C.A. Wilkie, Flame Retardant Polymer Nanocomposites, John Wiley & Sons, New York, 2007.
[7] G. Smart, B.K. Candola, A.R. Horrocks, S. Nazaré, D. Marney, Polypropylene fibers coating dispersed clays having improved fire performance, Part II: Characterization of fibers and fabrics from PP-nanoclay blend, Polym. Advan. Technol. 19 (2008) 658-670.
[8] A.V. Rane, V.K. Abitha, Study of mechanical, thermal and micro structural properties of EPDM/polypropylene/nanoclay composites with variable compatibilizer dosage, J. Mater. Environ. Sci. 6 (2015) 60-69.
[9] K. Ćwiek-Ludwicka, J.K. Ludwicki, Nanomaterials in food contact materials; considerations for risk assessment, Rocz. Panstw. Zakl. Hig. 68 (2017) 321-329.
[10] H.A. Patel, G.V. Joshi, R.R. Pawar, H.C. Bajaj, R.V. Jasra, Mechanical and thermal properties of polypropylene nanocomposite using organoclay, Polym. Composite. 31 (2010) 399-404.
[11] H. Plaza, R. Vergara, P. Zapata, Composites of polypropylene melt blended with synthesized silica nanoparticles, Compos. Sci. Technol. 71 (2011) 535-550.
[12] N.A. Rahman, A. Hassan, R. Yahya, R.A. Lafia-Araga, Glass fiber and nanoclay reinforced polypropylene composites morphological, thermal and mechanical Properties, Sains Malays. 42 (2013) 537-546.
[13] I. Dabrowska, L. Fambri, A. Pegotti, M. Slout, T. Vackova, J. Kolarik, Spinning, drawing and physical properties of propylene nanocomposite fibers with fumed nanosilica, Express Polym. Lett. 9 (2015) 277-290.
[14] J.Z. Zheng, X.P. Zhou, J.R. Ying, X.L. Xie, Y.W. Mai, Enhanced mechanical properties of polypropylene/silica nanocomposites with surface modification of nano-silica via in-situ copolymerization of methyl methacrylate and butyl acrylate, Chinese J. Polym. Sci. 27 (2009) 685-698.
[15] F. Mirjalili, L. Chuah, E. Salahi, Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites, Sci. World J. 2014 (2014) Article ID 718765.
[16] G.S. Bhat, R.R. Hegde, M. G. Kamath, B. Deshpande, Nanoclay reinforced fibers and nonwovens, J. Eng. Fiber Fabr. 3 (2008) 22-34.
[17] M. Oda, Y. Tanabe, M. Noda, S. Inaba, E. Krayukhina, H. Fukada, S. Uchiyama, Structural and binding properties of laminarin revealed by analytical ultracentrifugation and calorimetric analyses, Carbohyd. Res. 431 (2016) 33-38.