[1] S.C. Maroo, J.N. Chung, Nanodroplet impact on a homogenous surface using molecular dynamics, ASME 2008 3rd Energy Nanotechnology International Conference, ENIC2008-53036 (2008) 113-121.
[2] N. Sedighi, S. Murad, S.K. Aggarwal, Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size, Fluid Dyn. Res. 42 (2010) 035501.
[3] S. Asadi, Simulation of nanodroplet impact on a solid surface, Int. J. Nano Dimens. 3 (2012) 19-26.
[4] H. Hai-Bao, C. Li-Bin, B. Lu-Yao, H. Su-He, Molecular dynamics simulations of the nanodroplet impact process on hydrophobic surfaces, Chinese Phys. B, 23 (2014) 074702.
[5] X.-H. Li, X.-X. Zhang, M. Chen, Estimation of viscous dissipation in nanodroplet impact and spreading, Phys. Fluids, 27 (2015) 052007.
[6] K. Kobayashi, K. Konno, H. Yaguchi, H. Fujii, T. Sanada, M. Watanabe, Early stage of nanodroplet impact on solid wall, Phys. Fluids, 28 (2016) 032002.
[7] S. Asadi, Simulation of nanodroplet impact on an oblique surface in nanocoating processes by molecular dynamics, Iran. J. Surface Sci. Eng. 13 (2017) 41-50.
[8] H. Panahi, S. Asadi, Statistical modeling for oblique collision of nano- and microdroplets in plasma spray processes, Int. J. Nanosci. Nanotech. 14 (2018) 71-83.
[9] H.M. Khan, S.B. Provost, A. Singh, Predictive inference from a two-parameter Rayleigh life model given a doubly censored sample, Commu. Stat.-Theor. M. 39 (2010) 1237-1246.
[10] E.A. Ahmed, Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application, J. Appl. Stat. 44 (2017) 1576-1608.
[11] H. Panahi, S. Asadi, Modeling of splat particle splashing data during thermal spraying with the Burr distribution, J. Part. Sci. Technol. 3 (2017) 41-50.
[12] J.Y. Chiang, S. Wang, T.-R. Tsai, T. Li, Model selection approaches for predicting future order statistics from Type II censored data, Math. Probl. Eng. 4 (2018) 3465909.
[13] I. Basak, N. Balakrishnan, A note on the prediction of censored exponential lfetimes in a simple step-stress model with type-II censoring, Calcutta Stat. Assoc. 70 (2018) 57-73.
[14] A.M. Abouammoh, M.A. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Stat. Comput. Sim. 79 (2009) 1301-1315.
[15] S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math. 92 (2006) 97-111.
[16] S. Kotz, S. Nadarajah, Extreme value distributions: Theory and applications, Imperial College Press, London (2000).
[17] H. Panahi, Estimation methods for the generalized inverted exponential distribution under Type II progressively hybrid censoring with application to spreading of microdrops data, Commun. Math. Stat. 5 (2017) 159-174.
[18] E.A., Ahmed, Estimation and prediction for the generalized inverted exponential distribution nased on progressively first-failure censored data with application, J. Appl. Stat. 44 (2017) 1576-1608.
[19] B. Chandrasekar, A. Childs, N. Balakrishnan, Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring, Nav. Res. Log. 51 (2004) 994-1004.
[20] A. Shafay, Bayesian estimation and prediction based on generalized Type-II hybrid censored sample, J. Stat. Comput. Sim. 86 (2016) 1970-1988.
[21] R. Valiollahi, A. Asgharzadehb, D. Kundu, Prediction of future failures for generalized exponential distribution under Type-I or Type-II hybrid censoring, Braz. J. Probab. Stat. 31 (2015) 1-21.
[22] A.J. Fernández, On maximum likelihood prediction based on Type II doubly censored exponential data, Metrika, 3 (2000) 211-220.
[23] D. kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data, Comput. Stat. Data Anal. 54 (2010) 1547-1558.
[24] S.O. Bleed, Gibbs sampling and Bayesian estimators for time censoring constant stress reliability/life prediction, J. Hum. Appl. Sci. 28 (2016) 166-182.
[25] E. Saraiva, A. Suzuki, L. Milan, Bayesian computational methods for sampling from the posterior distribution of a bivariate survival model, based on AMH copula in the presence of right-censored data, Entropy, 20 (2018) 35-42.
[26] S. Sel, M. Jung, Y. Chung, Bayesian and maximum likelihood estimations from parameters of McDonald Extended Weibull model based on progressive Type-II censoring, J. Stat. Theor. Pract. 12 (2018) 231-254.
[27] H. Panahi, Inference for exponentiated Pareto distribution based on progressive first-failure censored data with application to cumin essential oil data, J. Stat. Manag. Sys. 21 (2018) 1433-1457.
[28] H.L. Lu, Prediction intervals of an ordered observation from one-parameter exponential distribution based on multiple Type II censored samples, J. Chin. Inst. Ind. Eng. 21 (2004) 494-503.