Iranian natural zeolite particle modification: Green synthesis, characterization, and oil spill remediation

Document Type : Research Article


Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran


In the present work, Iranian natural zeolite particles (NZ) as an abundant and low-cost resource were modified by chemical covalent attachments of commercially available stearic acid (SA) with tunable hydrophobic/hydrophilic properties. The versatile, simple, and green technique of mechanogriding was performed for the hydrophobic derivatisation of NZ. The NZ and as-prepared modified particles were thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Barret-Joyner-Halenda (BJH), and static water contact angle (WCA) measurements. TG-DTA results revealed the high thermal stability of the modified sample up to 490°C. The flake-like structures of functionalized NZ were discrete and no longer aggregated due to modification. The absorbing function of the modified NZ was evaluated by its removal of oil from a stable crude oil emulsion in water.

Graphical Abstract

Iranian natural zeolite particle modification: Green synthesis, characterization, and oil spill remediation


  • Iranian NZ was mainly comprising of clinoptiolite and cristobalite framework
  • Solventless synthesis with stearic acid was employed for the NZ modification.
  • Composite particles were produced with tunable hydrophobic/hydrophilic properties.
  • The modified particles showed some oil removal properties.


[1] M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci. 46 (2009) 73-80.
[2] S. Ivkovic, U. Deutsch, A. Silberbach, E. Walraph, M. Mannel, Dietary supplementation with the tribomechanically activated zeolite clinoptilolite in immunodeficiency: Effects on the immune system, Adv. Ther. 21 (2004) 135-147.
[3] D. Papaioannou, P.D. Katsoulos, N. Panousis, H. Karatzias, The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review, Micropor. Mesopor. Mat. 84 (2005) 161-170.
[4] S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010) 11-24.
[5] N. Mansouri, N. Rikhtegar, H. Ahmad Panahi, F. Atabi, B.K. Shahraki, Porosity, characterization and structural properties of natural zeolite - Clinoptilolite - As a sorbent, Environ. Prot. Eng. 39 (2013) 139-152.
[6] T. Sakthivel, D.L. Reid, I. Goldstein, L. Hench, S. Seal, Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation, Environ. Sci. Technol. 47 (2013) 5843-5850.
[7] M. Rahimi, J. Mahmoudi, Studies on optimization of efficient parameters for removal of lead from aqueous solutions by natural zeolite as a low-cost adsorbent using response surface methodology, Adv. Environ. Technol. 2 (2017) 99-108.
[8] M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution, J. Colloid Interf. Sci. 440 (2015) 272-281.
[9] R. Ebrahimi, A. Maleki, B. Shahmoradi, R. Rezaee, H. Daraei, Organic dye removal from aqueous media by using acid modified Clinoptilolite, J. Adv. Environ. Health Res. 6 (2018) 118-127.
[10] A. Zendelska, M. Golomeova, K. Lisichkov, S. Kuvendziev, Characterization and application of clinoptilolite for removal of heavy metal ions from water resources, Geol. Macedon. 32 (2018) 21-32.
[11] E.P. Favvas, C.G. Tsanaktsidis, A.A. Sapalidis, G.T. Tzilantonis, S.K. Papageorgiou, A.C. Mitropoulos, Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels, Micropor. Mesopor. Mat. 225 (2016) 385-391.
[12] R. Sharma, Surfactant adsorption and surface solubilization, American Chemical Society, 1995.
[13] M. Ghiaci, A. Abbaspur, R. Kia, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41, Sep. Purif. Technol. 40 (2004) 217-229.
[14] K. Hayakawa, T. Morita, M. Ariyoshi, T. Maeda, I. Satake, Adsorption of Cationic Surfactants on Hydrophobic Mordenites of Different Si/Al Ratio, J. Colloid Interf. Sci. 177 (1996) 621-627.
[15] P.J. Reeve, H.J. Fallowfield, Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms, J. Environ. Manage. 205 (2018) 253-261.
[16] E.H. Khader, T.H.J Mohammed, N. Mirghaffari, Use of natural coagulants for removal of COD, oil and turbidity from produced waters in the petroleum industry, J. Petrol. Environ. Biotechno. 9 (2018) 374.
[17] S.H. Ahn, S.H. Kim, S.G. Lee, Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6- naphthalate), J. Appl. Polym. Sci. 94 (2004) 812-818.
[18] M. Hasegawa, M.J. Low, Infrared study of adsorption in situ at the liquid-solid interface: III. Adsorption of stearic acid on silica and on alumina, and of decanoic acid on magnesia, J. Colloid Interf. Sci. 30 (1969) 378-386.
[19] L. Feng, H. Li, Y. Song, Y. Wang, Formation process of a strong water-repellent alumina surface by the sol-gel method, Appl. Surf. Sci. 256 (2010) 3191-3196.
[20] Y. Li, B. Han, L. Liu, F. Zhang, L. Zhang, S. Wen, Y. Lu, H. Yang, J. Shen, Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica, Compos. Sci. Technol. 88 (2013) 69-75.
[21] V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials, Mater. Charact. 58 (2007) 883-891.
[22] A.W. Burton, K. Ong, T. Rea, I.Y. Chan, On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems, Micropor. Mesopor. Mat. 117 (2009) 75-90.
[23] S. Landge, D. Ghosh, K. Aiken, Solvent-free synthesis of nanoparticles, in: Green Chemistry: An Inclusive Approach, Elsevier, 2017, pp. 609-646.
[24] L. Feng, H. Zhang, P. Mao, Y. Wang, Y. Ge, Superhydrophobic alumina surface based on stearic acid modification, Appl. Surf. Sci. 257 (2011) 3959-3963.
[25] J. Nawrocki, The silanol group and its role in liquid chromatography, J. Chromatogr. A. 779 (1997) 29-71.
[26] W. Mozgawa, The influence of some heavy metals cations on the FTIR spectra of zeolites, J. Mol. Struct. 555 (2000) 299-304.
[27] M. Doula, A. Ioannou, A. Dimirkou, Copper adsorption and Si, Al, Ca, Mg, and Na release from clinoptilolite, J. Colloid Interf. Sci. 245 (2002) 237-250.
[28] O. Korkuna, R. Leboda, J. Skubiszewska-Zie¸ba, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Micropor. Mesopor. Mat. 87 (2006) 243-254.
[29] W. Mozgawa, M. Sitarz, M. Rokita, Spectroscopic studies of different aluminosilicate structures, J. Mol. Struct. 511-512 (1999) 251-257.
[30] D. Ruiz-Serrano, M. Flores-Acosta, E. Conde-Barajas, D. Ramírez-Rosales, J.M. Yáñez-Limón, R. Ramírez-Bon, Study by XPS of different conditioning processes to improve the cation exchange in clinoptilolite, J. Mol. Struct. 980 (2010) 149-155.
[31] T. Perraki, A. Orfanoudaki, Mineralogical study of zeolites from Pentalofos area, Thrace, Greece, Appl. Clay Sci. 25 (2004) 9-16.
[32] V.M. Gun’ko, E.M. Pakhlov, O. V. Goncharuk, L.S. Andriyko, A.I. Marynin, A.I. Ukrainets, B. Charmas, J. Skubiszewska-Zięba, J.P. Blitz, Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates, Appl. Surf. Sci. 423 (2017) 855-868.
[33] W.S. Wise, W.J. Nokelberg, M. Kokinos, Clinoptilolite and ferrierite from Agoura, California, Am. Mineral, 54 (1969) 887-895.
[34] K. Koyama, Y. Takeuchi, Clinoptilolite: the distribution of potassium atoms and its role in thermal stability, Z. Krist. - Cryst. Mater. 145 (1977) 216-239.
[35] J.J. Pluth, J. V. Smith, J. Faber, Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature, J. Appl. Phys. 57 (1985) 1045-1049.
[36] J.G. Thompson, R.L. Withers, A. Melnitchenko, S.R. Palethorpe, Cristobalite-Related Phases in the NaAlO2–NaAlSiO4 System. I. Two Tetragonal and Two Orthorhombic Structures, Acta Crystallogr. B, 54 (1998) 531-546.
[37] H. Yuan, H. Bai, X. Zhang, J. Zhang, Z. Zhang, L. Yang, Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage, Sol. Energy, 173 (2018) 42-52.
[38] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
[39] M.F. De Lange, T.J.H. Vlugt, J. Gascon, F. Kapteijn, Adsorptive characterization of porous solids: Error analysis guides the way, Micropor. Mesopor. Mat. 200 (2014) 199-215.
[40] S. Mintova and J. Čejka, Micro/Mesoporous Composites, in: Stud. Surf. Sci. Catal., Elsevier, 2007, pp. 301-326, III–VI.
[41] X. Li, Z. Gao, S. Fang, C. Ren, K. Yang, F. Wang, Fractal characterization of nanopore structure in Shale, Tight Sandstone and Mudstone from the Ordos Basin of China using nitrogen adsorption, Energies, 12 (2019) 583.
[42] Z. Tisler, J. Horacek, J. Safar, R. Velvarska, L. Peliskova, J. Kocik, Y. Gherib, K. Marklova, R. Bulanek, D. Kubicka, Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications, Micropor. Mesopor. Mat. 282 (2019) 169-178.
[43] V.J. Inglezakis, M. Stylianou, M. Loizidou, Ion exchange and adsorption equilibrium studies on  clinoptilolite, bentonite and vermiculite, J. Phys. Chem. Solids, 71 (2010) 279-284.
[44] B. de Gennaro, M. Mercurio, P. Cappelletti, L. Catalanotti, A. Daković, A. De Bonis, C. Grifa, F. Izzo, M. Kraković, V. Monetti, and A. Langella, Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations. Part 2. A new approach for a fast functionalization of zeolite-rich carriers, Micropor. Mesopor. Mat. 235 (2016) 42-49.
[45] S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders : surface area, pore size, and density, Kluwer Academic Publishers, Dordrecht; Boston, 2004.
[46] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373-380.
[47] S. Mishra, V.A. Mendhe, A.K. Varma, A.D. Kamble, S. Sharma, M. Bannerjee, M.S. Kalpana, Influence of organic and inorganic content on fractal dimensions of Barakar and Barren Measures shale gas reservoirs of Raniganj basin, India, J. Nat. Gas Sci. Eng. 49 (2018) 393-409.
[48] L. Sun, J. Tuo, M. Zhang, C. Wu, Z. Wang, Y. Zheng, Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis, Fuel, 158 (2015) 549-557.
[49] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.
[50] A.S.M. Junaid, M. Rahman, H. Yin, W.C. McCaffrey, S.M. Kuznicki, Natural zeolites for oilsands bitumen cracking: Structure and acidity, Micropor. Mesopor. Mat. 144 (2011) 148-157.
[51] B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts: V. The t method, J. Catal. 4 (1965) 319-323.
[52] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids, in: Acad. Press, John Wiley & Sons Ltd., London, 1999, pp. 191.
[53] A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula, B. Coasne, Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials, Langmuir, 30 (2014) 13266-13274.
[54] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today, 41 (1998) 207-219.
[55] M. Nordberg, D.M. Templeton, O. Andersen, J.H. Duffus, Glossary of terms used in ecotoxicology (IUPAC Recommendations 2009), Pure Appl. Chem. 81 (2009) 829-970.
[56] D.A.D.A. Aljuboury, P. Palaniandy, H.B. Abdul Aziz, S. Feroz, Treatment of petroleum wastewater by conventional and new technologies - A review, Global Nest J. 19 (2017) 439-452.