Iranian natural zeolite particle modification: Green synthesis, characterization, and oil spill remediation

Document Type : Research Article

Authors

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

Abstract

In the present work, Iranian natural zeolite particles (NZ) as an abundant and low-cost resource were modified by chemical covalent attachments of commercially available stearic acid (SA) with tunable hydrophobic/hydrophilic properties. The versatile, simple, and green technique of mechanogriding was performed for the hydrophobic derivatisation of NZ. The NZ and as-prepared modified particles were thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Barret-Joyner-Halenda (BJH), and static water contact angle (WCA) measurements. TG-DTA results revealed the high thermal stability of the modified sample up to 490°C. The flake-like structures of functionalized NZ were discrete and no longer aggregated due to modification. The absorbing function of the modified NZ was evaluated by its removal of oil from a stable crude oil emulsion in water.

Graphical Abstract

Iranian natural zeolite particle modification: Green synthesis, characterization, and oil spill remediation

Highlights

  • Iranian NZ was mainly comprising of clinoptiolite and cristobalite framework
  • Solventless synthesis with stearic acid was employed for the NZ modification.
  • Composite particles were produced with tunable hydrophobic/hydrophilic properties.
  • The modified particles showed some oil removal properties.

Keywords


[1] M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci. 46 (2009) 73-80.
[2] S. Ivkovic, U. Deutsch, A. Silberbach, E. Walraph, M. Mannel, Dietary supplementation with the tribomechanically activated zeolite clinoptilolite in immunodeficiency: Effects on the immune system, Adv. Ther. 21 (2004) 135-147.
[3] D. Papaioannou, P.D. Katsoulos, N. Panousis, H. Karatzias, The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review, Micropor. Mesopor. Mat. 84 (2005) 161-170.
[4] S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010) 11-24.
[5] N. Mansouri, N. Rikhtegar, H. Ahmad Panahi, F. Atabi, B.K. Shahraki, Porosity, characterization and structural properties of natural zeolite - Clinoptilolite - As a sorbent, Environ. Prot. Eng. 39 (2013) 139-152.
[6] T. Sakthivel, D.L. Reid, I. Goldstein, L. Hench, S. Seal, Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation, Environ. Sci. Technol. 47 (2013) 5843-5850.
[7] M. Rahimi, J. Mahmoudi, Studies on optimization of efficient parameters for removal of lead from aqueous solutions by natural zeolite as a low-cost adsorbent using response surface methodology, Adv. Environ. Technol. 2 (2017) 99-108.
[8] M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution, J. Colloid Interf. Sci. 440 (2015) 272-281.
[9] R. Ebrahimi, A. Maleki, B. Shahmoradi, R. Rezaee, H. Daraei, Organic dye removal from aqueous media by using acid modified Clinoptilolite, J. Adv. Environ. Health Res. 6 (2018) 118-127.
[10] A. Zendelska, M. Golomeova, K. Lisichkov, S. Kuvendziev, Characterization and application of clinoptilolite for removal of heavy metal ions from water resources, Geol. Macedon. 32 (2018) 21-32.
[11] E.P. Favvas, C.G. Tsanaktsidis, A.A. Sapalidis, G.T. Tzilantonis, S.K. Papageorgiou, A.C. Mitropoulos, Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels, Micropor. Mesopor. Mat. 225 (2016) 385-391.
[12] R. Sharma, Surfactant adsorption and surface solubilization, American Chemical Society, 1995.
[13] M. Ghiaci, A. Abbaspur, R. Kia, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41, Sep. Purif. Technol. 40 (2004) 217-229.
[14] K. Hayakawa, T. Morita, M. Ariyoshi, T. Maeda, I. Satake, Adsorption of Cationic Surfactants on Hydrophobic Mordenites of Different Si/Al Ratio, J. Colloid Interf. Sci. 177 (1996) 621-627.
[15] P.J. Reeve, H.J. Fallowfield, Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms, J. Environ. Manage. 205 (2018) 253-261.
[16] E.H. Khader, T.H.J Mohammed, N. Mirghaffari, Use of natural coagulants for removal of COD, oil and turbidity from produced waters in the petroleum industry, J. Petrol. Environ. Biotechno. 9 (2018) 374.
[17] S.H. Ahn, S.H. Kim, S.G. Lee, Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6- naphthalate), J. Appl. Polym. Sci. 94 (2004) 812-818.
[18] M. Hasegawa, M.J. Low, Infrared study of adsorption in situ at the liquid-solid interface: III. Adsorption of stearic acid on silica and on alumina, and of decanoic acid on magnesia, J. Colloid Interf. Sci. 30 (1969) 378-386.
[19] L. Feng, H. Li, Y. Song, Y. Wang, Formation process of a strong water-repellent alumina surface by the sol-gel method, Appl. Surf. Sci. 256 (2010) 3191-3196.
[20] Y. Li, B. Han, L. Liu, F. Zhang, L. Zhang, S. Wen, Y. Lu, H. Yang, J. Shen, Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica, Compos. Sci. Technol. 88 (2013) 69-75.
[21] V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials, Mater. Charact. 58 (2007) 883-891.
[22] A.W. Burton, K. Ong, T. Rea, I.Y. Chan, On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems, Micropor. Mesopor. Mat. 117 (2009) 75-90.
[23] S. Landge, D. Ghosh, K. Aiken, Solvent-free synthesis of nanoparticles, in: Green Chemistry: An Inclusive Approach, Elsevier, 2017, pp. 609-646.
[24] L. Feng, H. Zhang, P. Mao, Y. Wang, Y. Ge, Superhydrophobic alumina surface based on stearic acid modification, Appl. Surf. Sci. 257 (2011) 3959-3963.
[25] J. Nawrocki, The silanol group and its role in liquid chromatography, J. Chromatogr. A. 779 (1997) 29-71.
[26] W. Mozgawa, The influence of some heavy metals cations on the FTIR spectra of zeolites, J. Mol. Struct. 555 (2000) 299-304.
[27] M. Doula, A. Ioannou, A. Dimirkou, Copper adsorption and Si, Al, Ca, Mg, and Na release from clinoptilolite, J. Colloid Interf. Sci. 245 (2002) 237-250.
[28] O. Korkuna, R. Leboda, J. Skubiszewska-Zie¸ba, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Micropor. Mesopor. Mat. 87 (2006) 243-254.
[29] W. Mozgawa, M. Sitarz, M. Rokita, Spectroscopic studies of different aluminosilicate structures, J. Mol. Struct. 511-512 (1999) 251-257.
[30] D. Ruiz-Serrano, M. Flores-Acosta, E. Conde-Barajas, D. Ramírez-Rosales, J.M. Yáñez-Limón, R. Ramírez-Bon, Study by XPS of different conditioning processes to improve the cation exchange in clinoptilolite, J. Mol. Struct. 980 (2010) 149-155.
[31] T. Perraki, A. Orfanoudaki, Mineralogical study of zeolites from Pentalofos area, Thrace, Greece, Appl. Clay Sci. 25 (2004) 9-16.
[32] V.M. Gun’ko, E.M. Pakhlov, O. V. Goncharuk, L.S. Andriyko, A.I. Marynin, A.I. Ukrainets, B. Charmas, J. Skubiszewska-Zięba, J.P. Blitz, Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates, Appl. Surf. Sci. 423 (2017) 855-868.
[33] W.S. Wise, W.J. Nokelberg, M. Kokinos, Clinoptilolite and ferrierite from Agoura, California, Am. Mineral, 54 (1969) 887-895.
[34] K. Koyama, Y. Takeuchi, Clinoptilolite: the distribution of potassium atoms and its role in thermal stability, Z. Krist. - Cryst. Mater. 145 (1977) 216-239.
[35] J.J. Pluth, J. V. Smith, J. Faber, Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature, J. Appl. Phys. 57 (1985) 1045-1049.
[36] J.G. Thompson, R.L. Withers, A. Melnitchenko, S.R. Palethorpe, Cristobalite-Related Phases in the NaAlO2–NaAlSiO4 System. I. Two Tetragonal and Two Orthorhombic Structures, Acta Crystallogr. B, 54 (1998) 531-546.
[37] H. Yuan, H. Bai, X. Zhang, J. Zhang, Z. Zhang, L. Yang, Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage, Sol. Energy, 173 (2018) 42-52.
[38] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
[39] M.F. De Lange, T.J.H. Vlugt, J. Gascon, F. Kapteijn, Adsorptive characterization of porous solids: Error analysis guides the way, Micropor. Mesopor. Mat. 200 (2014) 199-215.
[40] S. Mintova and J. Čejka, Micro/Mesoporous Composites, in: Stud. Surf. Sci. Catal., Elsevier, 2007, pp. 301-326, III–VI.
[41] X. Li, Z. Gao, S. Fang, C. Ren, K. Yang, F. Wang, Fractal characterization of nanopore structure in Shale, Tight Sandstone and Mudstone from the Ordos Basin of China using nitrogen adsorption, Energies, 12 (2019) 583.
[42] Z. Tisler, J. Horacek, J. Safar, R. Velvarska, L. Peliskova, J. Kocik, Y. Gherib, K. Marklova, R. Bulanek, D. Kubicka, Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications, Micropor. Mesopor. Mat. 282 (2019) 169-178.
[43] V.J. Inglezakis, M. Stylianou, M. Loizidou, Ion exchange and adsorption equilibrium studies on  clinoptilolite, bentonite and vermiculite, J. Phys. Chem. Solids, 71 (2010) 279-284.
[44] B. de Gennaro, M. Mercurio, P. Cappelletti, L. Catalanotti, A. Daković, A. De Bonis, C. Grifa, F. Izzo, M. Kraković, V. Monetti, and A. Langella, Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations. Part 2. A new approach for a fast functionalization of zeolite-rich carriers, Micropor. Mesopor. Mat. 235 (2016) 42-49.
[45] S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders : surface area, pore size, and density, Kluwer Academic Publishers, Dordrecht; Boston, 2004.
[46] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373-380.
[47] S. Mishra, V.A. Mendhe, A.K. Varma, A.D. Kamble, S. Sharma, M. Bannerjee, M.S. Kalpana, Influence of organic and inorganic content on fractal dimensions of Barakar and Barren Measures shale gas reservoirs of Raniganj basin, India, J. Nat. Gas Sci. Eng. 49 (2018) 393-409.
[48] L. Sun, J. Tuo, M. Zhang, C. Wu, Z. Wang, Y. Zheng, Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis, Fuel, 158 (2015) 549-557.
[49] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.
[50] A.S.M. Junaid, M. Rahman, H. Yin, W.C. McCaffrey, S.M. Kuznicki, Natural zeolites for oilsands bitumen cracking: Structure and acidity, Micropor. Mesopor. Mat. 144 (2011) 148-157.
[51] B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts: V. The t method, J. Catal. 4 (1965) 319-323.
[52] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids, in: Acad. Press, John Wiley & Sons Ltd., London, 1999, pp. 191.
[53] A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula, B. Coasne, Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials, Langmuir, 30 (2014) 13266-13274.
[54] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today, 41 (1998) 207-219.
[55] M. Nordberg, D.M. Templeton, O. Andersen, J.H. Duffus, Glossary of terms used in ecotoxicology (IUPAC Recommendations 2009), Pure Appl. Chem. 81 (2009) 829-970.
[56] D.A.D.A. Aljuboury, P. Palaniandy, H.B. Abdul Aziz, S. Feroz, Treatment of petroleum wastewater by conventional and new technologies - A review, Global Nest J. 19 (2017) 439-452.