[1] S. Renault, S. Bertrand, F. Carreaux, J.P. Bazureau, Parallel solution-phase synthesis of 2-alkylthio-5-arylidene-3,5-dihydro-4H-imidazol-4-one by one-pot three-component domino reaction, J. Combin. Chem. 9 (2007) 935-942.
[2] M. Nematpour, S.R. Koohi, E. Abedi, M. Lotfi, A green, one-pot formation of imidazolone and pyrimidinone derivatives containing a sulfonyl group, J. Chem. Res. 40 (2016) 652-654.
[3] D. Djukanovic, M. Petkovic, M. Simic, P. Jovanovic, G. Tasic, V. Savic, Synthesis of 2-unsubstituted imidazolones from bisamides via a one-pot, domino dehydration/base promoted cyclisation process, Tetrahedron Lett. 59 (2018) 914-917.
[4] S.O. Zaitseva, S.V. Golodukhina, N.S. Baleeva, E.A. Levina, A.Y. Smirnov, M.B. Zagudaylova, M.S. Baranov, Azidoacetic acid amides in the synthesis of substituted arylidene-1-h-imidazol-5-(4h)-ones, ChemistrySelect, 3 (2018) 8593-8596.
[5] D.E. Demong, I. Ng, M.W. Miller, A.W. Stamford, A novel method for the preparation of 4-arylimidazolones, Org Lett. 15 (2013) 2830-2833.
[6] H. Joshi, P. Upadhyay, D. Karia, A.J. Baxi, Synthesis of some novel imidazolinones as potent anticonvulsant agents, Eur. J. Med. Chem. 38 (2003) 837-840.
[7] K.R. Olsen, A.J. Kolar, N-acylimines as intermediates in reactions of α-substituted α-amino acids and dehyroamino acids, Tetrahedron Lett. 16 (1975) 3579-3582.
[8] M. Goodman, C.B. Glaser, Formation and reactions of amino acids and peptide oxazolones, Tetrahedron Lett. 10 (1969) 3473-3475.
[9] D. Beaufils, G. Danger, L. Boiteau, J.C. Rossia, R. Pascal, Diastereoselectivity in prebiotically relevant 5(4H)-oxazolone-mediated peptide couplings, Chem. Commun. 50 (2014) 3100-3102.
[10] S. Fozooni, M.A. Tikdari, H. Hamidian, H. Khabazzadeha, A synthesis of some new 4-arylidene-5(4H)-oxazolone azo dyes and an evaluation of their solvatochromic behaviour, Arkivoc, XIV (2008) 115-123.
[11] G.O. Urut, S. Alp, D. Topkaya, Synthesis, spectral, and thermal properties of some phosphorus-containing 9,10-anthraquininoid, thermally stable dyes, Dyes and Pigments, 145 (2017) 103-111.
[12] N.B. Patel, H.R. Patel, Synthesis and antibacterial and antifungal studies of novel nitrogen containing heterocycles from 5-ethylpyridin-2-ethanol, Indian J. Pharm. Sci. 72 (2010) 613-620.
[13] N.B. Patel, H.R. Patel, Design and synthesis of new imidazolinone derivatives as potential antifungal agents, J. Heterocyclic Chem. 48 (2011) 373-380.
[14] H. Lehr, S. Karlan, M.W. Goldberg, Derivatives of 4(5H)-imidazolone, J. Am. Chem. Soc. 75 (1953) 3640-3645.
[15] S. Fozooni, H. Khoshdast, H. Hassani, H. Hamidian, Synthesis of oxazolone and imidazolone derivatives in presence of H2O2 promoted fly ash as a novel and efficient catalyst, J. Sci. I. R. Iran, 28 (2017) 221-230.
[16] L.D. Luca, Naturally occurring and synthetic imidazoles: Their chemistry and their biological activities, Curr. Med. Chem. 13 (2006) 1-23.
[17] P.T. Oskoie, Y. Mansoori, Fe3O4@ZrO2-SO3H Nanoparticles: A new magnetically retrievable catalyst for esterification of mono- and dicarboxylic acids, J. Particle Sci. Techol. 4 (2018) 1-12.
[18] C.J. Jia, M. Schwickardi, C. Weidenthaler, W. Schmidt, S.B. Korhonen, M. Weckhuysen, F. Schüth, Co3O4-SiO2 Nanocomposite: A very active catalyst for co oxidation with unusual catalytic behavior, J. Am. Chem. Soc. 133 (2011) 11279-11288.
[19] G.A. M. Ali, O.A. Fouad, S.A. Makhlouf, M.M. Yusoff, K.F. Chong, Co3O4/SiO2 nanocomposites for supercapacitor application, J. Solid State Electr. 18 (2014) 2505-2512.
[20] J. Dong, L. Song, J.J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay, ACS. Appl. Mater. Interf. 6 (2014) 1959-1970.
[21] M. Sivachidambaram, J.J. Vijaya, K. Kaviyarasu, L.J. Kennedy, H.A. Al-Lohedane, R.J. Ramalingam, A novel synthesis protocol for Co3O4 nanocatalystsand their catalytic applications, RSC Adv. 7 (2017) 38861-38870.
[22] S. Bazgir, S. Farhadi, Microwave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation, Int. J. Nano Dimens. 8 (2017) 284-297.
[23] C. Qian, X. Guo, W. Zhang, H. Yang, Y. Qian, F. Xu, S. Qian, S. Lin, T. Fan, Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction, Micropor. Mesopor. Mat. 277 (2019) 45-51.
[24] M.A. Ghasemzadeh, M.H. Abdollahi-Basir, Z. Elyasi, Synthesis of some novel imidazoles catalyzed by Co3O4 nanoparticles and evaluation of their antibacterial activities, Comb. Chem. High T. Scr. 21 (2018) 271-280.
[25] M.A. Ghasemzadeh, B. Molaei, M.H. Abdollahi-Basir, F. Zamani, Preparation and catalytic study on a novel amino-functionalized silica-coated cobalt oxide nanocomposite for the synthesis of some indazoles, Acta Chim. Slov. 64 (2017) 73-82.
[26] R. Suthakaran, S. Kavimani, P. Venkaiaiah, K. Suganthi, Synthesis and antimicrobial activity of 3-(2-(4z)-4-substituted benzylidene-4,5-dihydro-5-oxo-2-phenyl imidazol-1-yl)ethyl)-6,8-un/dibromo subtituted-2-substituted quinazoline-(3h)-one, Rasayan J. Chem. 1 (2008) 22-29.
[27] K.D. Hartlen, A.P.T. Athanasopoulos, V. Kitaev, Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays, Langmuir, 24 (2008) 1714-1720.
[28] K. Azizi, M. Karimi, H.R. Shaterian, A. Heydari, Ultrasound irradiation for the green synthesis of chromenes using L-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst, RSC Adv. 4 (2015) 42220-42225.