[1] A.J. Varkey, A.F. Fort, Transparent conducting cadmium oxide thin films prepared by a solution growth technique, Thin Solid Films, 239 (1994) 211-213.
[2] M.A. Grado-Caffaro, M. Grado-Caffaro, A quantitative discussion on band-gap energy and carrier density of CdO in terms of temperature and oxygen partial pressure, Phys. Lett. A, 372 (2008) 4858-4860.
[3] F. Yakuphanoglu, Nanocluster n-CdO thin film by sol-gel for solar cell applications, Appl. Surf. Sci. 257 (2010) 1413-1419.
[4] A.S. Kamble, R.C. Pawar, J.Y. Patil, S.S. Suryavanshi, P.S. Patil, From nanowires to cubes of CdO: Ethanol gas response, J. Alloy. Compd. 509 (2011) 1035-1039.
[5] R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, Low temperature processed highly conducting, transparent, and wide bandgap Gd doped CdO thin films for transparent electronics, J. Alloy. Compd. 509 (2011) 4146-4149.
[6] G. Singh, I. P.S. Kapoor, R. Dubey, P. Srivastava, Synthesis, characterization and catalytic activity of CdO nanocrystals, Mater. Sci. Eng. B-Adv. 176 (2011) 121-126.
[7] J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe, J. Phys. Chem. Solids, 70 (2009) 1285-1289.
[8] A.A. Dakhel, Influence of annealing in nitrogen on the structural, electrical, and optical properties of CdO films doped with samarium, Mater. Chem. Phys. 117 (2009) 284-287.
[9] C. Qiu, X. Xiao, R. Liu, Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of poly ethylene glycol, Ceram. Int. 34 (2008) 1747-1751.
[10] A. Askarinejad, A. Morsali, Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method, Mater. Lett. 62 (2008) 478-482.
[11] Y. Liu, C. Yin, W. Wang, Y. Zhan, G. Wang, Synthesis of cadmium oxide nanowires by calcining precursors prepared in a novel inverse microemulsion, J. Mater. Sci. Lett. 21 (2002) 137-139.
[12] B.S. Zou, V.V. Volkov, Z. Wang, Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution, Chem. Mater. 11 (1999) 3037-3043.
[13] L. Osiglio, G. Romanelli, M. Blanco, Alcohol acetylation with acetic acid using borated zirconia as catalyst, J. Mol. Catal. A-Chem. 316 (2010) 52-58.
[14] T.W. Green, P.G.M. Wutz, Protective Groups in Organic Synthesis, 2nd ed., Wiley, New York, 1991.
[15] P. Kumar, R. Pandey, M. Bodas, S. Dagade, M. Dongare, A. Ramaswamy, Acylation of alcohols, thiols and amines with carboxylic acids catalyzed by yttria-zirconia-based Lewis acid, J. Mol. Catal. A-Chem. 181 (2002) 207-213.
[16] W. Steglich, G. Hofle, N,N‐Dimethyl‐4‐pyridin amine, a very effective acylation catalyst, Angew. Chem. Int. Edit. 8 (1969) 981.
[17] E. Vedejs, S.T. Diver, Tributylphosphine: a remarkable acylation catalyst, J. Am. Chem. Soc. 115 (1993) 3358-3359.
[18] E.F.V. Scriven, 4-Dialkylaminopyridines: super acylation and alkylation catalysts, Chem. Soc. Rev. 12 (1983) 129-161.
[19] S. Tomohumi, O. Kousaburo, O. Takashi, Remarkably fast acylation of alcohols with benzoyl chloride promoted by TMEDA, Synthesis, (1999) 1141-1144.
[20] A. Orita, C. Tanahashi, A. Kakuda, J. Otera, Highly efficient and versatile acylation of alcohols with Bi(OTf)3 as catalyst, Angew. Chem. Int. Edit. 39 (2000) 2877-2879.
[21] R. Alleti, M. Perambuduru, S. Samanha, V.P. Reddy, Gadolinium triflate: an efficient and convenient catalyst for acetylation of alcohols and amines, J. Mol. Catal. A-Chem. 226 (2005) 57-59.
[22] I. López, J.L. Bravo, M. Caraballo, J.L. Barneto, G. Silvero, Task-oriented use of ionic liquids: efficient acetylation of alcohols and phenolsو Tetrahedron, 52 (2011) 3339-3341.
[23] B. Karimi, J. Maleki, Lithium Trifluoromethane-sulfonate (LiOTf) as a recyclable catalyst for highly efficient acetylation of alcohols and diacetylation of aldehydes under mild and neutral reaction conditions, J. Org. Chem. 68 (2003) 4951-4954.
[24] N. Ahmed, J.E. van Lier, Molecular iodine in isopropenyl acetate (IPA): a highly efficient catalyst for the acetylation of alcohols, amines and phenols under solvent free conditions, Tetrahedron Lett. 47 (2006) 5345-5349.
[25] R.H. Tale, R.N. Adude, A novel 3-nitrobenzene boronic acid as an extremely mild and environmentally benign catalyst for the acetylation of alcohols under solvent-free conditions, Tetrahedron Lett. 47 (2006) 7263-7265.
[26] T.S. Reddy, M. Narasimhulu, N. Suryakiran, K.C. Mahesh, K. Ashalatha, Y. Venkateswarlu, A mild and efficient acetylation of alcohols, phenols and amines with acetic anhydride using La(NO3)3·6H2O as a catalyst under solvent-free conditions, Tetrahedron Lett. 47 (2006) 6825-6829.
[27] P. Phukan, Iodine as an extremely powerful catalyst for the acetylation of alcohols under solvent-free conditions, Tetrahedron Lett. 45 (2004) 4785-4787.
[28] R. Dalpozzo, A. De Nino, L. Maiuolo, A. Procopio, M. Nardi, G. Bartoli, R. Romeo, Highly efficient and versatile acetylation of alcohols catalyzed by cerium(III) triflate, Tetrahedron Lett. 44 (2003) 5621-5624.
[29] A. Kamal, M.N.A. Khan, K.S. Reddy, Y.V.V. Srikanth, T. Krishnaji, Al(OTf)3 as a highly efficient catalyst for the rapid acetylation of alcohols, phenols and thiophenols under solvent-free conditions, Tetrahedron Lett. 48 (2007) 3813-4818.
[30] S. Velusamy, S. Borpuzari, T. Punniyamurthy, Cobalt(II)-catalyzed direct acetylation of alcohols with acetic acid, Tetrahedron Lett. 61 (2005) 2011-2015.
[31] G. Bartoli, M. Bosco, R. Dalpozzo, E. Marcantoni, M. Massaccesi, L. Sambri, Zn(ClO4)2·6H2O as a powerful catalyst for a practical acylation of alcohols with acid anhydrides, Eur. J. Org. Chem. 32 (2003) 4611-4617.
[32] N. Ghaffari Khaligh, Preparation, characterization and use of poly(4-vinylpyridinium) perchlorate as a new, efficient, and versatile solid phase catalyst for acetylation of alcohols, phenols and amines, J. Mol. Catal. A-Chem. 363 (2012) 90-100.
[33] F. Rajabi, A heterogeneous cobalt(II) Salen complex as an efficient and reusable catalyst for acetylation of alcohols and phenols, Tetrahedron Lett. 50 (2009) 395-397.
[34] L. Osiglio, A.G. Sathicq, G.P. Romanelli, M.N. Blanco, Borated zirconia modified with ammonium metatungstate as catalyst in alcohol acetylation, J. Mol. Catal. A-Chem. 359 (2012) 97-103.
[35] A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65 (2006) 725-759.
[36] T. Schwartz, W. Kohnen, B. Jansen, U. Obst, Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms, FEMS Microbiol. Ecol. 43 (2003) 325-335.
[37] T. Schwartz, H. Volkmann, S. Kirchen, W. Kohnen, K. Schon-Holz, B. Jansen, U. Obst, Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates, FEMS Microbiol. Ecol. 57 (2006) 158-167.
[38] M. Seifrtová, A. Pena, C.M. Lino, P. Solich, Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection, Anal. Bioanal. Chem. 391 (2008) 799-805.
[39] S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen, J. Environ. Sci. 20 (2008) 806-813.
[40] K. Kümmerer, Antibiotics in the aquatic environment- A review - Part I, Chemosphere, 75 (2009) 417-434.
[41] M. Klavarioti, D. Mantzavinos, D. Kassino, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int. 35 (2009) 402-417.
[42] V.K. Sharma, Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics assessment, Chemosphere, 73 (2008) 1379-1386.
[43] M.E. Fragalà, Y. Aleeva, G. Malandrino, Effects of metal-organic chemical vapour deposition grown seed layer on the fabrication of well aligned ZnO nanorods by chemical bath deposition, Thin Solid Films, 519 (2011) 7694-7701.
[44] N. Chopra, A. Mansingh, G.K. Chadha, Electrical, optical and structural properties of amorphous V2O5-TeO2 blown films, J. Non-cryst. Solids, 126 (1990) 194-201.
[45] F.A. Harraz, R.M. Mohamed, A. Shawky, I.A. Ibrahim, Composition and phase control of Ni/NiO nanoparticles for photocatalytic degradation of EDTA, J. Alloy. Compd. 508 (2010) 133-140.
[46] P. Calza, C. Medana, M. Pazzi, C. Baiocchi, E. Pelizzetti, Photocatalytic transformations of sulphonamides on titanium dioxide, Appl. Catal. B-Environ. 53 (2004) 63-69.
[47] M.H. Sarvari, H. Sharghi, Reactions on a solid surface. A Simple, economical and efficient Friedel-Crafts acylation reaction over zinc oxide (ZnO) as a new catalyst, J. Org. Chem. 69 (2004) 6953-6956.
[48] R.S. Varma, Solvent-free organic syntheses. Using supported reagents and microwave irradiation, Green Chem. 1 (1999) 43-45.
[49] J. Otera, Esterification: Methods, Reactions, and Applications, 1st ed., Wiley-VCH, Weinheim, 2003.