Effects of Fe2O3 addition and mechanical activation on thermochemical heat storage properties of the Co3O4/CoO system

Document Type : Research Paper

Authors

Department of Metallurgy and Materials Engineering, Hamadan University of Technology, Hamadan, Iran

Abstract

Effects of Fe2O3 addition (2-20 wt%) with 1 h mechanical activation on redox reactions of Co3O4 were studied by TG/DSC, SEM, and XRD analyses. The results showed that a Fe2O3 addition from 2 to 15 wt% increases the oxygen release from 1.4 to 3.4 wt% and decreases the reduction onset temperature from 1030 to 960 °C, while it increases the oxygen uptake value and re-oxidation onset temperature respectively from 1.5 to 3.3 wt% and from 930 to 1010 °C. The increase in iron oxide to 20 wt% resulted in loss of heat storage properties due to significant reduction in oxygen release and uptake. Moreover, TG/DSC analyses revealed that reduction enthalpy of as-received Co3O4, 1 h ball milled Co3O4, and 1 h ball milled Co3O4-15% Fe2O3 are 622, 496, and 895 kJ/kg, respectively. Phase identification and TG experiments under argon atmosphere demonstrated that Fe2O3 participates in the reduction process. Furthermore, adding 15 wt% of iron oxide to cobalt oxide and 1 h mechanical activation improved the redox cyclability of cobalt oxide.

Graphical Abstract

Effects of Fe2O3 addition and mechanical activation on thermochemical heat storage properties of the Co3O4/CoO system

Highlights

  • Effects of Fe2O3 addition and 1 h ball milling on redox reactions of Co3Owere studied.
  • Some of the Fe2O3 reduced to Fe3O4 during the reduction process.
  • ΔHRed of Co3O4, 1 h ball milled  Co3O4, and 1 h ball mllied Co3O4-15 wt% Fe2O3 are 622, 496, and 895 kJ/kg, respectively.
  • Fe2O3 addition and ball milling improved the redox cyclability of Co3O4.

Keywords


[1] L. Andre, S. Abanades, G. Flamant, Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage, Renew. Sust. Energ. Rev. 64 (2016) 703-715.
[2] A.J. Carrillo, J. Moya, A. Bayon, P. Jana, V.A. de la Pena OShea, M. Romero, J. Gonzalez-Aguilar, D.P. Serrano, P. Pizarro, J.M. Coronado, Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones, Sol. Energ. Mat. Sol. C. 123 (2014) 47-57.
[3] N.P. Siegel, Thermal energy storage for solar power production, Wires Energy Environ. 1 (2012) 119-131.
[4] S. Kuravi, J. Trahan, Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. 39 (2013) 285-319.
[5] T. M. I. Mahlia, T.J. Saktisahdan, A. Jannifar, M.H. Hasan, H.S.C. Matseelar, A review of available methods and development on energy storage; technology update, Renew. Sust. Energ. Rev. 33 (2014) 532-454.
[6] P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rougé, M. Cabassud, P. Cognet, A review on high temperature thermochemical heat energy storage, Renew. Sust. Energ. Rev. 32 (2014) 591-610.
[7] T. Yan, R.Z. Wang, T.X. Li, L.W. Wang, I.T. Fred, A review of promising candidate reactions for chemical heat storage, Renew. Sust. Energ. Rev. 43 (2015) 13-31.
[8] C. Agrafiotis, A. Becker, M. Roeb, C. Sattler, D. Zentrum, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 5: Testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage, Sol. Energy, 139 (2016) 676-694.
[9] M. Romero, A. Steinfeld, Concentrating solar thermal power and thermochemical fuels, Energ. Environ. Sci. 5 (2012) 9234-9245.
[10] L. Cabeza, Advances in Thermal Energy Storage System, Cambridge, UK, 2015.
[11] C. Agrafiotis, M. Roeb, M. Schmucker, C. Sattler, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders, Sol. Energy, 102 (2014) 189-211.
[12] J.E. Funk, R.M. Reinstrom, Energy requirements in production of hydrogen from water, Ind. Eng. Chem. Procs. D. D. 5 (1966) 336-342.
[13] F. Schaube, A. Wörner, and R. Tamme, High temperature thermochemical, heat storage for concentrated solar power using gas-solid reactions, J. Sol. Energ. -T ASME, 133 (2011) 031006.
[14] B. Wong, Thermochemical heat storage for concentrated solar power. In: Final Report for the U.S. Department of Energy 2011, General Atomics, 3550 General Atomics Court, San Diego CA92037: San Diego, CA, USA.
[15] R. Chacartegui, A. Alovisio, C. Ortiz, J.M. Valverde, V. Verda, J.A. Becerra, Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle, Appl. Energ. 173 (2016) 589-605.
[16] F. Schaube, L. Koch, A. Wörner, H. Müller-Steinhagen, A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage, Thermochim. Acta, 538 (2012) 9-20.
[17] M. Schmidt, C. Szczukowski, C. Roßkopf, M. Linder, A. Wörner, Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide, Appl. Therm. Eng. 62 (2014) 553-559.
[18] J. Yan, C.Y. Zhao, Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage, Appl. Energ. 175 (2016) 277-284.
[19] M. Tmar, C. Bernard, M. Ducarroir, Local storage of solar energy by reversible reactions with sulfates, Sol. Energy, 26 (1981) 529-536.
[20] K. Lovegrove, A. Luzzi, I. Soldiani, H. Kreetz, Developing ammonia based thermochemical energy storage for dish power plants, Sol. Energy, 76 (2004) 331-337.
[21] M. Rydén, H. Leion, T. Mattisson, A. Lyngfelt, Combined oxides as oxygen-carriermaterial for chemical-looping with oxygen uncoupling, Appl. Energ. 113 (2014) 1924-1932.
[22] K.N. Hutchings, M. Wilson, P.A. Larsen, R.A. Cutler, Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide, Solid State Ionics, 177 (2006) 177 45-51.
[23] C. Agrafiotis, M. Roeb, M. Schmücker, C. Sattler, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers, Sol. Energy, 114 (2015) 440-458.
[24] M. Neises, S. Tescari, L. de Oliveira, M. Roeb, C. Sattler, B. Wong, Solar-heated rotary kiln for thermochemical energy storage, Sol. Energy, 86 (2012) 3040-3048.
[25] A.P. Muroyama, A.J. Schrader, P.G. Loutzenhiser, Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: kinetic analyses, Sol. Energy, 122 (2015) 409-418.
[26] A.J. Carrillo, D. Sastre, D.P. Serrano, P. Pizarroab, J.M. Coronado, Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage, Phys. Chem. Chem. Phys. 18 (2016) 8039-8048.
[27] A.J. Carrillo, D.P. Serrano, P. Pizarro, J.M. Coronado, Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: influence of the initial particle size on the morphological evolution and cyclability, J. Mater. Chem. A, 2 (2014) 19435-19443.
[28] M. Wokon, A. Kohzer, A. Benzarti, T. Bauer, M. Linder, A. Wörner, Thermochemical energy storage based on the reversible reaction of metal oxides, In: 3rd International conference on chemical looping, Göteborg, Sweden, September 9-11, 2014.
[29] E. Alonso, C. Pérez-Rábago, J. Licurgo, E. Fuentealba, C.A. Estrada, First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage, Sol. Energy, 115 (2015) 297-305.
[30] T. Block, M. Schmücker, Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems, Sol. Energy, 126 (2016) 195-207.
[31] S.M. Babiniec, E.N. Coker, J.E. Miller, A. Ambrosini, Investigation of LaxSr1-xCoyM1-yO3-d (M= Mn, Fe) perovskite materials as thermochemical energy storage media, Sol. Energy, 118 (2015) 451-459.
[32] S.M. Babiniec, E.N. Coker, J.E. Miller, A. Ambrosini, Doped calcium manganites for advanced high-temperature thermochemical energy storage, Int. J. Energ. Res. 40 (2016) 280-284.
[33] K.J. Albrecht, G.S. Jackson, R.J. Braun, Thermo-dynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage, Appl. Energ. 165 (2016) 285-96.
[34] B. Wong, L. Brown, F. Schaube, R. Tamme, C. Sattler, Oxide based thermochemical heat storage, In: Presented at Solar PACES, Perpignan, France, 2010.
[35] C. Agrafiotis, S. Tescari, M. Roeb, M. Schmucker, C. Sattler, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers, Sol. Energy, 114 (2015) 459-475.
[36] S. Tescari, C. Agrafiotis, S. Breuer, L. De Oliveira, M. Nieses-von Puttkamer, M. Roeb, C. Sattler, Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts, Energ. Proced. 49 (2014) 1034-1043.
[37] G. Karagiannakis, C. Pagkoura, A. Zygogianni, S. Lorentzou, A.G. Konstandopoulos, Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants, Energ. Proced. 49 (2014) 820-829.
[38] B. Ehrhart , E. Coker, N. Siegel, A. Weimer, Thermochemical cycle of a mixed oxide for augmentation of thermal energy storage in solid particles, Energ. Proced. 49 (2014) 762-771.
[39] Y.S. Lin, Q. Yang, J. Ida, High temperature sorption of carbon dioxide on perovskite-type metal oxides, J. Taiwan Inst. Chem. E. 40 (2009) 276-780.
[40] T. Block, N. Knoblauch, M. Shmücker, The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material, Thermochim. Acta, 577 (2014) 25-32.
[41] C. Pagkoura, G. Karagiannakis, A. Zygogianni, S. Lorentzou, M. Kostoglou, A.G. Konstandopoulos, M. Rattenburry, W.J. Woodhead, Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants, Sol. Energy, 108 (2014) 146-163.
[42] V. Varin, T. Czujko, S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer, USA, 2009.
[43] P.R. Soni, Mechanical Alloying: Fundamentals and Applications, first ed., Cambridge International Science Publishing, UK, 2001.
[44] P. Balaz, Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam, 2000.
[45] C. Suryanarayana, Mechanical Alloying and Milling, first ed., Marcel Dekker, New York, 2004.
[46] N. Nekokar, M. Pourabdoli, A. Ghaderi Hamidi, D. Uner, Effect of mechanical activation on thermal energy storage of Co3O4/CoO system, Adv. Powder Technol. 29 (2018) 333-340.