Fe3O4@ZrO2-SO3H Nanoparticles: A new magnetically retrievable catalyst for esterification of mono- and dicarboxylic acids

Document Type : Research Article


Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran


In this work preparation of sulfonic acid functionalized magnetite encapsulated zirconia (Fe3O4@ZrO2-SO3H) has been reported. Structural, chemical, and magnetic properties of the magnetically supported catalyst have also been investigated by Fourier transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction spectroscopy (WXRD), thermal gravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), Hammett acidity function and pH analysis as well as Brunauer-Emmett-Teller surface area measurement (SBET). The esterification reaction of various mono- and dicarboxylic acids with different alcohols was chosen to show the nano-catalytic activity. The reaction conditions were optimized and catalyst recovery was also demonstrated. The magnetic catalyst was magnetically separated and reused several times without significant loss of activity. 

Graphical Abstract

Fe3O4@ZrO2-SO3H Nanoparticles: A new magnetically retrievable catalyst for esterification of mono- and dicarboxylic acids


  • A zirconia-based magnetic acid catalyst has been prepared.
  • Esterification reaction of mono- and dicarboxylic acids by the catalyst has been studied.
  • Hammett acidity function has been used for evaluation of the catalyst acidity.


[1] A. Ross, Industrial applications of organotin compounds, Ann. N.Y. Acad. Sci. 125 (1965) 107-123.
[2] Y. Mansoori, F.S. Tataroglu, M. Sadaghian, Esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions, Green Chem. 7 (2005) 870-873.
[3] Y. Mansoori, F. Tataroglu Seyidov, S. Bohlooli, M.R. Zamanloo, G.H. Imanzadeh, Esterification of carboxylic acids and diacids by trialkyl borate under solvent- and catalyst-free conditions, Chinese J. Chem. 25 (2007) 1878-1882.
[4] Y. Li, T. Leng, H. Lin, C. Deng, X. Xu, N. Yao, P. Yang, X. Zhang, Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry, J. Proteome Res. 6 (2007) 4498-4510.
[5] A.R. Kiasat, J. Davarpanah, Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones, J. Mol. Catal. A- Chem. 373 (2013) 46-54.
[6] M.A. Zolfigol, Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions, Tetrahedron, 57 (2001) 9509-9511.
[7] S.T. Firdovsi, M. Yagoub, A.E. Parvin, Trans-esterification reaction of dimethyl terephthalate by 2-ethylhexanol in the presence of heterogeneous catalysts under solvent-free condition, Chinese J. Chem. 25 (2007) 246-249.
[8] K. Saravanan, B. Tyagi and H.C. Bajaj, Sulfated zirconia: an efficient solid acid catalyst for esterification of myristic acid with short chain alcohols, Catal. Sci. Techol. 2 (2012) 2512-2520.
[9] A.P. Kumar, J.H. Kim, T.D. Thanh, Y.-I. Lee, Chiral zirconia magnetic microspheres as a new recyclable selector for the discrimination of racemic drugs, J. Mater. Chem. B, 1 (2013) 4909-4915.
[10] N.E. Leadbeater, M. Marco, Preparation of polymer-supported ligands and metal complexes for use in catalysis, Chem. Rev. 102 (2002) 3217-3274.
[11] C. Gómez-Polo, A. Gil, S.A. Korili, J.I. Pérez-Landázabal, V. Recarte, R. Trujillano, M.A. Vicente, Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts, J. Magn. Magn. Mater. 316 (2007) e783-e786.
[12] Z. Wang, D. Wu, G. Wu, N. Yang, A. Wu, Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water, J. Hazard. Mater. 244-245 (2013) 621-627. 
[13] M.B. Gawande, A.K. Rathi, I.D. Nogueira, R.S. Varma, P.S. Branco, Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions, Green Chem. 15 (2013) 1895-1899.
[14] H. Naeimi, Z. Nazifi, A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives, J. Nanopart. Res. 15 (2013) 2026-2037.
[15] A. Mobaraki, B. Movassagh, B. Karimi, Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles, ACS Comb. Sci. 16 (2014) 352-358.
[16] A. Mobaraki, B. Movassagh, B. Karimi, Hydrophobicity-enhanced magnetic solid sulfonic acid: A simple approach to improve the mass transfer of reaction partners on the surface of the heterogeneous catalyst in water-generating reactions, Appl. Catal. A-Gen. 472 (2014) 123-133.
[17] I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J.-F. Fouquenet, S. Cohen-Jonathan, M. Souce, H. Marchais, P. Dubois, Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy, Analyst, 130 (2005) 1395-1403.
[18] M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, A magnetically recyclable nanocomposite catalyst for olefin epoxidation, Angew. Chem. Int. Edit. 46 (2007) 7039-7043.
[19] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.
[20] V.V. Costa, M.J. Jacinto, L.M. Rossi, R. Landers, E.V. Gusevskaya, Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles, J. Catal. 282 (2011) 209-214.
[21] J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229-282.
[22] C.J. Dunlap, P.W. Carr, C.V. McNeff, D. Stoll, Peer Reviewed: Zirconia stationary phases for extreme separations, Anal. Chem. 73 (2001) 598 A-607 A.
[23] Z.-G. Shi, L. Xu, S.-L. Da, Y.-Q. Feng, Study of the magnesia additive on the characterization of zirconia–magnesia composite sphere, Micropor. Mesopor. Mat. 94 (2006) 34-39.
[24] J.S. Moya, S. Lopez-Esteban, C. Pecharromán, The challenge of ceramic/metal microcomposites and nanocomposites, Prog. Mater. Sci. 52 (2007) 1017-1090.
[25] J. Randon, S. Huguet, A. Piram, G. Puy, C. Demesmay, J.-L. Rocca, Synthesis of zirconia monoliths for chromatographic separations, J. Chromatogr. A, 1109 (2006) 19-25.
[26] A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethyl-phenylcarbamate)-coated zirconia monolithic column by capillary electro-chromatography, J. Chromatogr. A, 1218 (2011) 5369-5373.
[27] A.P. Kumar, J.H. Park, Zirconia-bBased stationary phases for chiral separation: Mini Review, Anal. Lett. 45 (2012) 15-42.
[28] F.T. Sejidov, Y. Mansoori, N. Goodarzi, Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition, J. Mol. Catal. A-Chem. 240 (2005) 186-190.
[29] W.L.F. Armarego, C.L.L. Chai, Purification of laboratory chemicals, 6th ed., Butterworth-Heinemann, Elsevier Inc., Burlington, 2009.
[30] Y.-W. Wu, J. Zhang, J.-F. Liu, L. Chen, Z.-L. Deng, M.-X. Han, X.-S. Wei, A.-M. Yu, H.-L. Zhang, Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples, Appl. Surf. Sci. 258 (2012) 6772-6776. 
[31] J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Chemical Analysis by X-Ray Diffraction, Ind. Eng. Chem. Anal. Ed. 10 (1938) 457-512.
[32] A. Guinier, X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Courier Dover Dover Publications, New York, 2013.
[33] A. Amoozadeh, S. Rahmani, M. Bitaraf, F.B. Abadi, E. Tabrizian, Nano-zirconia as an excellent nano-support for immobilization of sulfonic acid: a new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions, New J. Chem. 40 (2016) 770-780.
[34] Y. Mansoori, T. Mohseni Masooleh, Polyimide /organo-montmorillonite nanocomposites: A comparative study of the organoclays modified with aromatic diamines, Polym. Composite. 36 (2015) 613-622.
[35] H. Cao, J. He, L. Deng, X. Gao, Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method, Applied Surface Science, 255 (2009) 7974-7980.
[36] M. Pooresmaeil, Y. Mansoori, M. Mirzaeinejad, A. L. I. Khodayari, Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly(acrylic acid), Adv. Polym. Tech. 37 (2016) 262-274.
[37] J. Choubey, A.K. Bajpai, Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin, J. Mater. Sci.-Mater. M. 21 (2010) 1573-1586.
[38] H. Xing, T. Wang, Z. Zhou, Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity-catalytic activity relationships, J. Mol. Catal. A-Chem. 264 (2007) 53-59.
[39] G. Van der Waal, Ester base fluids, Unichem International, Gouda, The Netherlands, 1995.