[1] A. Ross, Industrial applications of organotin compounds, Ann. N.Y. Acad. Sci. 125 (1965) 107-123.
[2] Y. Mansoori, F.S. Tataroglu, M. Sadaghian, Esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions, Green Chem. 7 (2005) 870-873.
[3] Y. Mansoori, F. Tataroglu Seyidov, S. Bohlooli, M.R. Zamanloo, G.H. Imanzadeh, Esterification of carboxylic acids and diacids by trialkyl borate under solvent- and catalyst-free conditions, Chinese J. Chem. 25 (2007) 1878-1882.
[4] Y. Li, T. Leng, H. Lin, C. Deng, X. Xu, N. Yao, P. Yang, X. Zhang, Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry, J. Proteome Res. 6 (2007) 4498-4510.
[5] A.R. Kiasat, J. Davarpanah, Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones, J. Mol. Catal. A- Chem. 373 (2013) 46-54.
[6] M.A. Zolfigol, Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions, Tetrahedron, 57 (2001) 9509-9511.
[7] S.T. Firdovsi, M. Yagoub, A.E. Parvin, Trans-esterification reaction of dimethyl terephthalate by 2-ethylhexanol in the presence of heterogeneous catalysts under solvent-free condition, Chinese J. Chem. 25 (2007) 246-249.
[8] K. Saravanan, B. Tyagi and H.C. Bajaj, Sulfated zirconia: an efficient solid acid catalyst for esterification of myristic acid with short chain alcohols, Catal. Sci. Techol. 2 (2012) 2512-2520.
[9] A.P. Kumar, J.H. Kim, T.D. Thanh, Y.-I. Lee, Chiral zirconia magnetic microspheres as a new recyclable selector for the discrimination of racemic drugs, J. Mater. Chem. B, 1 (2013) 4909-4915.
[10] N.E. Leadbeater, M. Marco, Preparation of polymer-supported ligands and metal complexes for use in catalysis, Chem. Rev. 102 (2002) 3217-3274.
[11] C. Gómez-Polo, A. Gil, S.A. Korili, J.I. Pérez-Landázabal, V. Recarte, R. Trujillano, M.A. Vicente, Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts, J. Magn. Magn. Mater. 316 (2007) e783-e786.
[12] Z. Wang, D. Wu, G. Wu, N. Yang, A. Wu, Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water, J. Hazard. Mater. 244-245 (2013) 621-627.
[13] M.B. Gawande, A.K. Rathi, I.D. Nogueira, R.S. Varma, P.S. Branco, Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions, Green Chem. 15 (2013) 1895-1899.
[14] H. Naeimi, Z. Nazifi, A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives, J. Nanopart. Res. 15 (2013) 2026-2037.
[15] A. Mobaraki, B. Movassagh, B. Karimi, Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles, ACS Comb. Sci. 16 (2014) 352-358.
[16] A. Mobaraki, B. Movassagh, B. Karimi, Hydrophobicity-enhanced magnetic solid sulfonic acid: A simple approach to improve the mass transfer of reaction partners on the surface of the heterogeneous catalyst in water-generating reactions, Appl. Catal. A-Gen. 472 (2014) 123-133.
[17] I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J.-F. Fouquenet, S. Cohen-Jonathan, M. Souce, H. Marchais, P. Dubois, Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy, Analyst, 130 (2005) 1395-1403.
[18] M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, A magnetically recyclable nanocomposite catalyst for olefin epoxidation, Angew. Chem. Int. Edit. 46 (2007) 7039-7043.
[19] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.
[20] V.V. Costa, M.J. Jacinto, L.M. Rossi, R. Landers, E.V. Gusevskaya, Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles, J. Catal. 282 (2011) 209-214.
[21] J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229-282.
[22] C.J. Dunlap, P.W. Carr, C.V. McNeff, D. Stoll, Peer Reviewed: Zirconia stationary phases for extreme separations, Anal. Chem. 73 (2001) 598 A-607 A.
[23] Z.-G. Shi, L. Xu, S.-L. Da, Y.-Q. Feng, Study of the magnesia additive on the characterization of zirconia–magnesia composite sphere, Micropor. Mesopor. Mat. 94 (2006) 34-39.
[24] J.S. Moya, S. Lopez-Esteban, C. Pecharromán, The challenge of ceramic/metal microcomposites and nanocomposites, Prog. Mater. Sci. 52 (2007) 1017-1090.
[25] J. Randon, S. Huguet, A. Piram, G. Puy, C. Demesmay, J.-L. Rocca, Synthesis of zirconia monoliths for chromatographic separations, J. Chromatogr. A, 1109 (2006) 19-25.
[26] A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethyl-phenylcarbamate)-coated zirconia monolithic column by capillary electro-chromatography, J. Chromatogr. A, 1218 (2011) 5369-5373.
[27] A.P. Kumar, J.H. Park, Zirconia-bBased stationary phases for chiral separation: Mini Review, Anal. Lett. 45 (2012) 15-42.
[28] F.T. Sejidov, Y. Mansoori, N. Goodarzi, Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition, J. Mol. Catal. A-Chem. 240 (2005) 186-190.
[29] W.L.F. Armarego, C.L.L. Chai, Purification of laboratory chemicals, 6th ed., Butterworth-Heinemann, Elsevier Inc., Burlington, 2009.
[30] Y.-W. Wu, J. Zhang, J.-F. Liu, L. Chen, Z.-L. Deng, M.-X. Han, X.-S. Wei, A.-M. Yu, H.-L. Zhang, Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples, Appl. Surf. Sci. 258 (2012) 6772-6776.
[31] J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Chemical Analysis by X-Ray Diffraction, Ind. Eng. Chem. Anal. Ed. 10 (1938) 457-512.
[32] A. Guinier, X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Courier Dover Dover Publications, New York, 2013.
[33] A. Amoozadeh, S. Rahmani, M. Bitaraf, F.B. Abadi, E. Tabrizian, Nano-zirconia as an excellent nano-support for immobilization of sulfonic acid: a new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions, New J. Chem. 40 (2016) 770-780.
[34] Y. Mansoori, T. Mohseni Masooleh, Polyimide /organo-montmorillonite nanocomposites: A comparative study of the organoclays modified with aromatic diamines, Polym. Composite. 36 (2015) 613-622.
[35] H. Cao, J. He, L. Deng, X. Gao, Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method, Applied Surface Science, 255 (2009) 7974-7980.
[36] M. Pooresmaeil, Y. Mansoori, M. Mirzaeinejad, A. L. I. Khodayari, Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly(acrylic acid), Adv. Polym. Tech. 37 (2016) 262-274.
[37] J. Choubey, A.K. Bajpai, Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin, J. Mater. Sci.-Mater. M. 21 (2010) 1573-1586.
[38] H. Xing, T. Wang, Z. Zhou, Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity-catalytic activity relationships, J. Mol. Catal. A-Chem. 264 (2007) 53-59.
[39] G. Van der Waal, Ester base fluids, Unichem International, Gouda, The Netherlands, 1995.