[1] X. Li, A. Faghri, Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J. Power Sources, 226 (2013) 223-240.
[2] S. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energ. 35 (2010) 9349-9384.
[3] K.A. Mauritz. R.B. Moore, State of understanding of Nafion, Chem. Rev. 104 (2004) 4535-4586.
[4] M.M. Hasani-Sadrabadi, E. Dashtimoghadam, F.S. Majedi, H. Moaddel, A. Bertsch, P. Renaud, Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane, Nanoscale, 5 (2013) 11710-11717.
[5] A. Hacquard, Improving and understanding direct methanol fuel cell (DMFC) performance, MSc Thesis, Worcester Polytechnic Institute, 2005.
[6] M.S. Asgari, M. Nikazar, P. Molla-Abbasi, M.M. Hasani-Sadrabadi, Nafion®/histidine functionalized carbon nanotube: High-performance fuel cell membranes, Int. J. Hydrogen Energ. 38 (2013) 5894-5902.
[7] C-S. Wu and H-T. Liao, Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites, Polymer, 48 (2007) 4449-4458.
[8] N.H. Jalani, K. Dunn, R. Datta, Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nano-composite membranes for higher temperature PEM fuel cells, Electrochim. Acta. 51 (2005) 553-560.
[9] Z-G. Shao, H. Xu, M. Li, I-M. Hsing, Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell, Solid State Ionics, 177 (2006) 779-85.
[10] M. Amjadi, S. Rowshanzamir, S. Peighambardoust, S. Sedghi, Preparation, characterization and cell performance of durable Nafion/SiO2 hybrid membrane for high temperature polymeric fuel cells, J. Power Sources, 210 (2012) 350-357.
[11] D. Jung, S. Cho, D. Peck, D. Shin, J. Kim, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sources, 106 (2002) 173-177.
[12] K. Adjemian, S. Lee, S. Srinivasan, J. Benziger, A. Bocarsly, Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140 oC, J. Electrochem. Soc. 149 (2002) A256-A261.
[13] H-C. Chien, L-D. Tsai, C-P. Huang, C-y. Kang, J-N. Lin, F-C. Chang, Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells, Int. J. Hydrogen Energ. 38 (2013) 13792-13801.
[14] J-H. Kim, S-K. Kim, K. Nam, D-W. Kim, Composite proton conducting membranes based on Nafion and sulfonated SiO2 nanoparticles, J. Membrane Sci. 415 (2012) 696-701.
[15] I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43 (2005) 3124-3131.
[16] P. Molla-Abbasi, K. Janghorban, M.S. Asgari, A novel heteropolyacid-doped carbon nanotubes /Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications, Iran. Polym. J. 27 (2018) 77-86.
[17] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interf. Sci. 26 (1968) 62-69.
[18] Y. Xiong, Z. Zhang, X. Wang, B. Liu, J. Lin, Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst, Chem. Eng. J. 235 (2014) 349-355.
[19] A. Singhvi, S. Gomathy, P. Gopalan, A. Kulkarni, Effect of aliovalent cation doping on the electrical conductivity of Na2SO4: Role of charge and size of the dopant, J. Solid State Chem. 138 (1998) 183-192.
[20] J-M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. Jérôme, C. Detrembleur, Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications, J. Membrane Sci. 303 (2007) 252-257.
[21] J. Sun, X. Jiang, A. Siegmund, M.D. Connolly, K.H. Downing, N.P. Balsara, Morphology and proton transport in humidified phosphonated peptoid block copolymers, Macromolecules, 49 (2016) 3083-3090.