[1] F.U. Khan, Y. Chen, Z.U.H.K. Khan, A. Ahmad, K. Tahir, L. Wang, M.R. Khan, P. Wan, Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent, J. Photoch. Photobio. B. 164 (2016) 344-351.
[2] C.M. Cobley, S.E. Skrabalak, D.J. Campbell, Y. Xia, Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications, Plasmonics, 4 (2009) 171-179.
[3] S. Jeong, H. Choi, J.Y. Kim, T. Lee, Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics, Part. Part. Sys. Charact. 32 (2015) 164-175.
[4] K.S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B. 110 (2006) 19220-19225.
[5] V. Thamilselvi, and K. V. Radha, A review on the diverse application of silver nanoparticle, IOSR J. Pharm. 7 (2017) 21-27.
[6] M.Y. Babu, V.J. Devi, C.M. Ramakritinan, R. Umarani, N. Taredahalli, A.K. Kumaraguru, Application of biosynthesized silver nanoparticles in agricultural and marine pest control, Curr. Nanosci. 10 (2014) 1-8.
[7] S.M. Ali, N.M.H. Yousef, N.A. Nafady, Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi, J. Nanomater. 2015 (2015) Article ID 218904, doi:10.1155/2015/218904.
[8] M.S. Abdel-Aziz, M.S.Shahee, A.A. El-Nekeety, M.A. Abdel-Wahhab, Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc. 18 (2014) 356-363.
[9] A. Phull, Q. Abbas, A. Ali, H. Raza, S. Jakim, M. Zia, I. Haq, Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crudeextract of Bergenia ciliate, Fut. J. Pharm. Sci. 2 (2016) 31-36.
[10] E.E. Elemike, O.E. Fayemi, A.C. Ekennia, D.C. Onwudiwe, E.E. Ebenso, Silver nanoparticles mediated by Costus afer leaf extract: synthesis, antibacterial, antioxidant and electrochemical properties, Molecules, 22 (2017) 701.
[11] T. Togashi, K. Saito, Y. Matsuda, I. Sato, H. Kon, K. Uruma, M. Ishizaki, K. Kanaizuka, M. Sakamoto, N. Ohya, M. Kurihara, Synthesis of water-dispersible silver nanoparticles by thermal decomposition of water-soluble silver oxalate precursors, J. Nanosci. Nanotechno. 14 (2014) 6022-6027.
[12] R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin, T. Scheper, Electrochemical method for the synthesis of silver nanoparticles, J. Nanopart. Res. 11 (2009) 1193-1200.
[13] S. Machmudah, T. Takayuki Sato, Wahyudiono, M. Sasaki, M. Goto, Silver nanoparticles generated by pulsed laser ablation in supercritical CO2 medium, High Pressure Res. 32 (2012) 1-7.
[14] A. Pal, S. Shah, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent, Mater. Chem. Phys. 114 (2009) 530-532.
[15] H. Wang, X. Qiao, J. Chen, S. Ding, Preparation of silver nanoparticles by chemical reduction method, Colloid. Surface. A. 256 (2016) 111-115.
[16] K. Gudikandula, S.C. Maringanti, Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties, J. Exp. Nanosci. 11 (2016) 714-721.
[17] H.M.M. Ibrahim, Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms, J. Radiat. Res. Appl. Sci. 8 (2015) 265-275.
[18] H. Parab, N. Shenoy, S.A. Kumar, S.D. Kumar, A.V.R. Reddy, One pot spontaneous green synthesis of gold nanoparticles using cocos nucifera (coconut palm) coir extract, J. Mater. Envir. Sci. 7 (2016) 2468-2481.
[19] S.A. Aromal, D. Philip, Green synthesis of gold nanoparticles using Trigonellafoenum-graecum and its size dependent catalytic activity, Spectrochim. Acta Part A. 97 (2012) 1-7.
[20] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, J. Adv. Res., 7 (2016) 17-28.
[21] M. Ndikau, N.M. Noah, D.M. Andala, E. Masika, Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract, Int. J. Anal. Chem. 2017 (2017) Article ID 8108504, doi:10.1155/2017/8108504.
[22] N. Amini, G. Amin, Z. Jafari Azar, Green synthesis of silver nanoparticles using Avena sativa L. extract, Nanomed. Res. J. 2 (2017) 57-63.
[23] B. Habibi, H. Hadilou, S. Mollaei, A. Yazdinezhad, Green synthesis of Silver nanoparticles using the aqueous extract of Prangos ferulaceae leaves, Inter. J. Nano Dim. 8 (2017) 132-141.
[24] J. Saha, A. Begum, A. Mukherjee, S. Kumar, A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye, Sust. Envir. Res. 27 (2017) 245-250.
[25] I. Fatimah, Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation, J. Adv. Res. 7 (2016) 961-969.
[26] S. Ahmed, M. Ahmad, B. L. Swami, S. Kram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J. Radiat. Res. Appl. Sci. 9 (2016) 1-7.
[27] K. Jemal, B.V. Sandeep, S. Pola, Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles, J. Nanomater. 2017 (2017) Article ID 4213275, 11 pages, doi:10.1155/2017/4213275.
[28] D. Sarkar, G. Paul, Green synthesis of silver nanoparticles using Mentha asiatica (Mint) extract and evaluation of their antimicrobial potential, Int. J. Curr. Res. Biosci. Plant Biol. 4 (2017) 77-82.
[29] K. Schlesier, M. Harwat, V. Boèhm, R. Bitsch, Assessment of antioxidant activity by using different in vitro methods, Free Rad. Res. 36 (2002) 177-187.
[30] S.A. Baba, S.A. Malik, Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of ArisaemajacquemontiiBlume, J. Taibah Uni. Sci. 9 (2015) 449-454.
[31] A. Verma, M.S. Mehata, Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity, J. Radiat. Res. Appl. Sci. 9 (2016) 109-115.
[32] M.B. Kasture, P. Patel, A.A. Prabhune, C.V. Ramana, A.A. Kulkarni, B.L.V. Prasad, Synthesis of silver nanoparticles by sophoro lipids: Effect of temperature and sophorolipid structure on the size of particles, J. Chem. Sci. 120 (2008) 515-520.
[33] B.S. Maria, A. Devadiga, V.S. Kodialbail, M.B. Saidutta, Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract, Appl. Nanosci. 5 (2015) 755-762.
[34] A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides, Langmuir, 27 (2011) 15268-15274.
[35] B. Afreen, A. Vandana, Synthesis and characterization of silver nanoparticles by Rhizopus stolonier, Int. J. Biomed. Adv. Res. 2 (2011) 148-158.
[36] E.E. Elemike, D.C. Onwudiwe, O. Arijeh, H.U. Nwankwo, Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters, B. Mater. Sci. 40 (2017) 129-137.
[37] S. Das, P. Roy, S. Mondal, T. Bera, A. Mukherjee, One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis, Colloid. Surface. B. 107 (2013) 27-34.
[38] K. Tatsumi, M. Yano, K. Kaminade, A. Sugiyama, M. Sato, K. Toyooka, T. Aoyama, F. Sato, K. Yazaki, Characterization of shikonin derivative secretion in Lithospermum erythrorhizon hairy roots as a model of lipid-soluble metabolite secretion from plants, Front. Plant Sci. 7 (2016) 1066, doi: 10.3389/fpls.2016.01066.
[39] V. Goodarzi, H. Zamani, L. Bajuli, A. Moradshahi, Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles' synthesis, Mol. Biol. Res. Commun. 3 (2014) 165-174.