[1] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J.M. Benítez, F. Herrera, A review of microarray datasets and applied feature selection methods, Inform. Sciences, 282 (2014) 111-135.
[2] H. Salem, G. Attiya, N. El-Fishawy, Classification of human cancer diseases by gene expression profiles, Appl. Soft Comput. 50 (2017) 124-134.
[3] P. Agarwalla, S. Mukhopadhyay, Bi-stage hierarchical selection of pathway genes for cancer progression using a swarm based computational approach, Appl. Soft Comput. 62 (2018) 230-250.
[4] H.H. Inbarani, A.T. Azar, G. Gothi, Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis, Comput. Met. Prog. Bio. 113 (2014) 175-185.
[5] Y.Chen, Q.Zhu, H. Xu, Finding rough set reducts with fish swarm algorithm, Knowl-Based Syst. 81 (2015) 22-29.
[6] I.K. Park, G.S. Choi, Rough set approach for clustering categorical data using information-theoretic dependency measure, Inform. Syst. 48 (2015) 289-295.
[7] Z. Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sciences, 177 (2017) 3-27.
[8] L.I. Kuncheva, Fuzzy rough sets: Application to feature selection, Fuzzy Set. Syst. 51 (1992) 147-153.
[9] R. Jensen, Q. Shen, Fuzzy-rough attributes reduction with application to web categorization, Fuzzy Set. Syst. 141 (2004) 469-485.
[10] M. Pradipta, G. Partha, Fuzzy-rough simultaneous attribute selection and feature extraction algorithm, IEEE T. Cybernetics, 43 (2013) 1166-1177.
[11] S. Zhao, E.C.C. Tsang, D. Chen, X. Wang, Building a rule-based classifier-a fuzzy rough set approach, IEEE T. Knowl. Data En. 22 (2010) 624-638.
[12] M. Dorigo, LM. Gambardella, A cooperative learning approach to the traveling salesman problem, IEEE T. Evolut. Comput. 1 (1997) 53-66.
[13] P. Schloss, J. Handelsman, Introducing SONS, a tool for operational taxonomic unit based comparisons of microbial community memberships and structures, Appl. Environ. Microb. 72 (2006) 6773-6779.
[14] B. Rodriguez-Brito, F. Rohwer, R.A. Edwards, An application of statistics to comparative metagenomics, BMC Bioinformatics, 7 (2006) 162.
[15] J. White, N. Nagarajan, M. Pop, Statistical methods for detecting differentially abundant features in clinical metagenomics samples, PLOS Comput. Biol, 5 (2009) e1000352.
[16] D. Huson, D. Richter, S. Mitra, A. Auch, S. Schuster, Methods for comparative metagenomics, BMC Bioinformatics, 10(Suppl 1) (2009) S12.
[17] Kristiansson, E. et al, ShotgunFunctionalizeR: An R-package for functional comparison of metagenomes, Bioinformatics, 25 (2009) 2737-2737.
[18] G.A. Montazer, S. ArabYarmohammadi, Detection of phishing attacks in Iranian e-banking using a fuzzy-rough hybrid system, Appl. Soft Comput. 35 (2015) 482-492.
[19] M. Podsiadło, H. Rybiński, Rough sets in economy and finance, In: Peters J.F., Skowron A. (eds) Transactions on Rough Sets XVII. Lecture Notes in Computer Science, Vol. 8375, pp. 109-173, 2014.
[20] C.H. Xie, Y.J. Liu, J.Y. Chang, Medical image segmentation using rough set and local polynomial regression, Multimed. Tools Appl. 74 (2015) 1885-1914.
[21] V. Prasad, T.S. Rao, M.S. Babu, Thyroid disease diagnosis via hybrid architecture composing rough data sets theory and machine learning algorithms, Soft Comput. 20 (2016) 1179-1189.
[22] M.P. Francisco, J.V. Berna-Martinez, A.F. Oliva, M.A.A. Ortega, Algorithm for the detection of outliers based on the theory of rough sets, Decis. Support Syst. 75 (2015) 63-75.
[23] J. Dai, Q. Xu, Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification, Appl. Soft Comput. 13 (2013) 211-221.
[24] M. Dorigo, L.M. Gambardella, A cooperative learning approach to the traveling salesman problem, IEEE T. Evolut. Comput. 1 (1997) 53-66.
[25] P. Naruekamol, M. Sohn, Q. Li, A two-stage statistical procedure for feature selection and comparison in functional analysis of metagenomes, Bioinformatics, 31 (2014) 157-165.