Maltodextrine nanoparticles loaded with polyphenolic extract from apple industrial waste: preparation, optimization and characterization

Document Type : Research Article

Authors

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST)

Abstract

The main aim of this study was to prepare apple pomace polyphenolic extract (APPE- referred to as a core) loaded into biodegradable and commercially available natural polymer such as maltodextrin (MD-referred to as a shell). The polymer coating potentially improves its low stability and bioavailability and also directs the control release of the encapsulated material. The MD-nanoparticles (NPs) loaded with the APPE were prepared by a modified nanoprecipitation method. An experimental central composite design was utilized for the modeling, optimization and to assess the influence (and interactions) of the shell to core ratio, surfactant concentration, and sonication time (as the independent variables) on the NPs preparation to maximize the level of polyphenols loading and the NPs formation yield (referred to as dependant variables). The adopted models were verified statistically and experimentally. The results showed that amongst the independent variables, the shell to core ratio and the surfactant concentration were statistically significant in the experimentally selected ranges. By adopting the optimal process conditions, the spherical shaped NPs were prepared with a mean average size of 52 nm (confirmed by the Dynamic Light Scattering and FE-SEM techniques) and polyphenols loading efficiency of 98%. FT-IR spectroscopy confirmed the successful entrapment of the core in the shell of NPs. Hydrogen bonding is one of the modes of interactions between the hydrophilic moieties of polyphenols and MD. The in vitro polyphenols release of the NPs through simulating cancerous tumor acidity conditions represented a sustainable release, indicating potential anticancer application of the NPs.

Keywords


[1]      J. Boyer, R.H. Liu, Apple phytochemicals and their health benefits, Nutr. J. 3 (2004) 1–15. doi:10.1186/1475-2891-3-5.
[2]      B. Suárez, Á.L. Álvarez, Y.D. Garc’\ia, G. del Barrio, A.P. Lobo, F. Parra, Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace, Food Chem. 120 (2010) 339–342. doi:10.1016/j.foodchem.2009.09.073.
[3]      G.S. Dhillon, S. Kaur, S.K. Brar, Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review, Renew. Sustain. Energy Rev. 27 (2013) 789–805. doi:10.1016/j.rser.2013.06.046.
[4]      Z. Fang, B. Bhandari, Encapsulation of polyphenols – a review, Trends Food Sci. & Technol. 21 (2010) 510–523. doi:http://dx.doi.org/10.1016/j.tifs.2010.08.003.
[5]      O.I. Parisi, F. Puoci, D. Restuccia, G. Farina, F. Iemma, N. Picci, Polyphenols and Their Formulations: Different Strategies to Overcome the Drawbacks Associated with Their Poor Stability and Bioavailability, in: Polyphenols Hum. Heal. Dis., 2013: pp. 29–45. doi:10.1016/B978-0-12-398456-2.00004-9.
[6]      G. Spigno, F. Donsì, D. Amendola, M. Sessa, G. Ferrari, D.M. De Faveri, Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste, J. Food Eng. 114 (2013) 207–214. doi:10.1016/j.jfoodeng.2012.08.014.
[7]      H.B. Nair, B. Sung, V.R. Yadav, R. Kannappan, M.M. Chaturvedi, B.B. Aggarwal, Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer, Biochem. Pharmacol. 80 (2010) 1833–1843. doi:10.1016/j.bcp.2010.07.021.
[8]      H. Souguir, F. Salaün, P. Douillet, I. Vroman, S. Chatterjee, Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method, Chem. Eng. J. 221 (2013) 133–145. doi:10.1016/j.cej.2013.01.069.
[9]      A. Altunbas, S.J. Lee, S.A. Rajasekaran, J.P. Schneider, D.J. Pochan, Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles, Biomaterials. 32 (2011) 5906–5914.
[10]    P. Salehi, O.V. Akinpelu, S. Waissbluth, E. Peleva, B. Meehan, J. Rak, S.J. Daniel, Attenuation of Cisplatin Ototoxicity by Otoprotective Effects of Nanoencapsulated Curcumin and Dexamethasone in a Guinea Pig Model., Otol. Neurotol. 35 (2014) 1131–1139. doi:10.1097/MAO.0000000000000403.
[11]    S. Ghosh, S.R. Dungdung, S.T. Chowdhury, A.K. Mandal, S. Sarkar, D. Ghosh, N. Das, Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress, Free Radic. Biol. Med. 51 (2011) 1893–1902. doi:10.1016/j.freeradbiomed.2011.08.019.
[12]    L. Dian, E. Yu, X. Chen, X. Wen, Z. Zhang, L. Qin, Q. Wang, G. Li, C. Wu, Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles, Nanoscale Res. Lett. 9 (2014) 684. doi:10.1186/1556-276X-9-684.
[13]    A.R. Patel, P.C.M. Heussen, J. Hazekamp, E. Drost, K.P. Velikov, Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium, Food Chem. 133 (2012) 423–429. doi:10.1016/j.foodchem.2012.01.054.
[14]    C. F. Rodrigues, K. Ascencao, F. A.M. Silva, B. Sarmento, M. B.P.P. Oliveira, J. C. Andrade, Drug-Delivery Systems of Green Tea Catechins for Improved Stability and Bioavailability, Curr. Med. Chem. 20 (2013) 4744–4757. http://www.ingentaconnect.com/content/ben/cmc/2013/00000020/00000037/art00008 (accessed August 8, 2016).
[15]    S.M. Henning, Y. Niu, Y. Liu, N.H. Lee, Y. Hara, G.D. Thames, R.R. Minutti, C.L. Carpenter, H. Wang, D. Heber, Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals, J. Nutr. Biochem. 16 (2005) 610–616. doi:10.1016/j.jnutbio.2005.03.003.
[16]    Anonymous, Agricultural statistics Volume III - horticultural crops, Tehran, 2014.
[17]    C.M. Galanakis, Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications, Trends Food Sci. Technol. 26 (2012) 68–87. doi:10.1016/j.tifs.2012.03.003.
[18]    S. Faramarzi, A. Yadollahi, M. Barzegar, K. Sadraei, S. Pacifico, T. Jemric, Comparison of Phenolic Compounds’ Content and Antioxidant Activity between Some Native Iranian Apples and Standard Cultivar “Gala,” J. Agric. Sci. Technol. 16 (2014) 1601–1611.
[19]    J. Ubbink, J. Krüger, Physical approaches for the delivery of active ingredients in foods, Trends Food Sci. Technol. 17 (2006) 244–254. doi:10.1016/j.tifs.2006.01.007.
[20]    C.E. Mora-huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery, Int. J. Pharm. 385 (2010) 113–142. doi:10.1016/j.ijpharm.2009.10.018.
[21]    R. Harris, E. Lecumberri, I. Mateos-Aparicio, M. Mengíbar, A. Heras, Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis, Carbohydr. Polym. 84 (2011) 803–806. doi:10.1016/j.carbpol.2010.07.003.
[22]    F. Avaltroni, P.P.E. Bouquerand, V. Normand, Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions, Carbohydr. Polym. 58 (2004) 323–334. doi:10.1016/j.carbpol.2004.08.001.
[23]    E.K. Bae, S.J. Lee, Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin, J. Microencapsul. 25 (2008) 549–560. doi:10.1080/02652040802075682.
[24]    H. Fessi, F. Puisieux, J.P. Devissaguet, N. Ammoury, S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm. 55 (1989) 1–4. doi:10.1016/0378-5173(89)90281-0.
[25]    S. Khoee, M. Yaghoobian, An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion, Eur. J. Med. Chem. 44 (2009) 2392–2399. doi:10.1016/j.ejmech.2008.09.045.
[26]    S. Saikia, N.K. Mahnot, C.L. Mahanta, Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying, Food Chem. 171 (2015) 144–152. doi:10.1016/j.foodchem.2014.08.064.
[27]    G.B. Celli, A. Ghanem, M.S.-L. Brooks, Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles, J. Berry Res. 6 (2016) 1–11. doi:10.3233/JBR-150107.
[28]    M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, M.J. Núñez, Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace, J. Agric. Food Chem. 53 (2005) 2111–2117. doi:10.1021/jf0488110.
[29]    Q. Wang, S. Ma, B. Fu, F.S.C. Lee, X. Wang, Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid (GA) from licorice (Glycyrrhiza uralensis Fisch), Biochem. Eng. J. 21 (2004) 285–292. doi:10.1016/j.bej.2004.06.002.
[30]    M. Valipour, Process conditions optimization in the polyphenolic extraction ( one- and multi-counter current ) from Iranian industrial apple pomace, Chemistry MSc thesis, Iranian Research Organization for Science and Technology, 2016.
[31]    U. Bilati, E. Allémann, E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci. 24 (2005) 67–75. doi:10.1016/j.ejps.2004.09.011.
[32]    S. Galindo-Rodriguez, E. Allémann, H. Fessi, E. Doelker, Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods, Pharm. Res. 21 (2004) 1428–1439. doi:10.1023/B:PHAM.0000036917.75634.be.
[33]    S.A. Guhagarkar, V.C. Malshe, P. V Devarajan, Nanoparticles of polyethylene sebacate: a new biodegradable polymer., AAPS PharmSciTech. 10 (2009) 935–42. doi:10.1208/s12249-009-9284-4.
[34]    M.E. Matteucci, M.A. Hotze, K.P. Johnston, R.O. Williams, Drug nanoparticles by antisolvent precipitation: Mixing energy versus surfactant stabilization, Langmuir. 22 (2006) 8951–8959. doi:10.1021/la061122t.
[35]    M.R. Kulterer, M. Reischl, V.E. Reichel, S. Hribernik, M. Wu, S. Köstler, R. Kargl, V. Ribitsch, Nanoprecipitation of cellulose acetate using solvent/nonsolvent mixtures as dispersive media, Colloids Surfaces A Physicochem. Eng. Asp. 375 (2011) 23–29. doi:10.1016/j.colsurfa.2010.11.029.
[36]    E. Lepeltier, C. Bourgaux, P. Couvreur, Nanoprecipitation and the “Ouzo effect”: Application to drug delivery devices, Adv. Drug Deliv. Rev. 71 (2014) 86–97. doi:10.1016/j.addr.2013.12.009.
[37]    K. Fernández, J. Aburto, C. von Plessing, M. Rockel, E. Aspé, Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts, Food Chem. 207 (2016) 75–85. doi:http://dx.doi.org/10.1016/j.foodchem.2016.03.083.
[38]    A.B. Shirode, D.J. Bharali, S. Nallanthighal, J.K. Coon, S.A. Mousa, R. Reliene, Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention, Int. J. Nanomedicine. 10 (2015) 475–484. doi:10.2147/IJN.S65145.
[39]    J.A. Heredia-Guerrero, J.J. Benítez, E. Domínguez, I.S. Bayer, R. Cingolani, A. Athanassiou, A. Heredia, Infrared and Raman spectroscopic features of plant cuticles: a review, Front. Plant Sci. 5 (2014) 305. doi:10.3389/fpls.2014.00305.
[40]    S.K. Pandey, D.K. Patel, R. Thakur, D.P. Mishra, P. Maiti, C. Haldar, Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation, Int. J. Biol. Macromol. 75 (2015) 521–529. doi:10.1016/j.ijbiomac.2015.02.011.
[41]    E.S. Lee, Z. Gao, Y.H. Bae, Recent progress in tumor pH targeting nanotechnology, J. Control. Release. 132 (2008) 164–170. doi:10.1016/j.jconrel.2008.05.003.