[1] J. Boyer, R.H. Liu, Apple phytochemicals and their health benefits, Nutr. J. 3 (2004) 1–15. doi:10.1186/1475-2891-3-5.
[2] B. Suárez, Á.L. Álvarez, Y.D. Garc’\ia, G. del Barrio, A.P. Lobo, F. Parra, Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace, Food Chem. 120 (2010) 339–342. doi:10.1016/j.foodchem.2009.09.073.
[3] G.S. Dhillon, S. Kaur, S.K. Brar, Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review, Renew. Sustain. Energy Rev. 27 (2013) 789–805. doi:10.1016/j.rser.2013.06.046.
[4] Z. Fang, B. Bhandari, Encapsulation of polyphenols – a review, Trends Food Sci. & Technol. 21 (2010) 510–523. doi:http://dx.doi.org/10.1016/j.tifs.2010.08.003.
[5] O.I. Parisi, F. Puoci, D. Restuccia, G. Farina, F. Iemma, N. Picci, Polyphenols and Their Formulations: Different Strategies to Overcome the Drawbacks Associated with Their Poor Stability and Bioavailability, in: Polyphenols Hum. Heal. Dis., 2013: pp. 29–45. doi:10.1016/B978-0-12-398456-2.00004-9.
[6] G. Spigno, F. Donsì, D. Amendola, M. Sessa, G. Ferrari, D.M. De Faveri, Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste, J. Food Eng. 114 (2013) 207–214. doi:10.1016/j.jfoodeng.2012.08.014.
[7] H.B. Nair, B. Sung, V.R. Yadav, R. Kannappan, M.M. Chaturvedi, B.B. Aggarwal, Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer, Biochem. Pharmacol. 80 (2010) 1833–1843. doi:10.1016/j.bcp.2010.07.021.
[8] H. Souguir, F. Salaün, P. Douillet, I. Vroman, S. Chatterjee, Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method, Chem. Eng. J. 221 (2013) 133–145. doi:10.1016/j.cej.2013.01.069.
[9] A. Altunbas, S.J. Lee, S.A. Rajasekaran, J.P. Schneider, D.J. Pochan, Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles, Biomaterials. 32 (2011) 5906–5914.
[10] P. Salehi, O.V. Akinpelu, S. Waissbluth, E. Peleva, B. Meehan, J. Rak, S.J. Daniel, Attenuation of Cisplatin Ototoxicity by Otoprotective Effects of Nanoencapsulated Curcumin and Dexamethasone in a Guinea Pig Model., Otol. Neurotol. 35 (2014) 1131–1139. doi:10.1097/MAO.0000000000000403.
[11] S. Ghosh, S.R. Dungdung, S.T. Chowdhury, A.K. Mandal, S. Sarkar, D. Ghosh, N. Das, Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress, Free Radic. Biol. Med. 51 (2011) 1893–1902. doi:10.1016/j.freeradbiomed.2011.08.019.
[12] L. Dian, E. Yu, X. Chen, X. Wen, Z. Zhang, L. Qin, Q. Wang, G. Li, C. Wu, Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles, Nanoscale Res. Lett. 9 (2014) 684. doi:10.1186/1556-276X-9-684.
[13] A.R. Patel, P.C.M. Heussen, J. Hazekamp, E. Drost, K.P. Velikov, Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium, Food Chem. 133 (2012) 423–429. doi:10.1016/j.foodchem.2012.01.054.
[14] C. F. Rodrigues, K. Ascencao, F. A.M. Silva, B. Sarmento, M. B.P.P. Oliveira, J. C. Andrade, Drug-Delivery Systems of Green Tea Catechins for Improved Stability and Bioavailability, Curr. Med. Chem. 20 (2013) 4744–4757. http://www.ingentaconnect.com/content/ben/cmc/2013/00000020/00000037/art00008 (accessed August 8, 2016).
[15] S.M. Henning, Y. Niu, Y. Liu, N.H. Lee, Y. Hara, G.D. Thames, R.R. Minutti, C.L. Carpenter, H. Wang, D. Heber, Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals, J. Nutr. Biochem. 16 (2005) 610–616. doi:10.1016/j.jnutbio.2005.03.003.
[16] Anonymous, Agricultural statistics Volume III - horticultural crops, Tehran, 2014.
[17] C.M. Galanakis, Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications, Trends Food Sci. Technol. 26 (2012) 68–87. doi:10.1016/j.tifs.2012.03.003.
[18] S. Faramarzi, A. Yadollahi, M. Barzegar, K. Sadraei, S. Pacifico, T. Jemric, Comparison of Phenolic Compounds’ Content and Antioxidant Activity between Some Native Iranian Apples and Standard Cultivar “Gala,” J. Agric. Sci. Technol. 16 (2014) 1601–1611.
[19] J. Ubbink, J. Krüger, Physical approaches for the delivery of active ingredients in foods, Trends Food Sci. Technol. 17 (2006) 244–254. doi:10.1016/j.tifs.2006.01.007.
[20] C.E. Mora-huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery, Int. J. Pharm. 385 (2010) 113–142. doi:10.1016/j.ijpharm.2009.10.018.
[21] R. Harris, E. Lecumberri, I. Mateos-Aparicio, M. Mengíbar, A. Heras, Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis, Carbohydr. Polym. 84 (2011) 803–806. doi:10.1016/j.carbpol.2010.07.003.
[22] F. Avaltroni, P.P.E. Bouquerand, V. Normand, Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions, Carbohydr. Polym. 58 (2004) 323–334. doi:10.1016/j.carbpol.2004.08.001.
[23] E.K. Bae, S.J. Lee, Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin, J. Microencapsul. 25 (2008) 549–560. doi:10.1080/02652040802075682.
[24] H. Fessi, F. Puisieux, J.P. Devissaguet, N. Ammoury, S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm. 55 (1989) 1–4. doi:10.1016/0378-5173(89)90281-0.
[25] S. Khoee, M. Yaghoobian, An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion, Eur. J. Med. Chem. 44 (2009) 2392–2399. doi:10.1016/j.ejmech.2008.09.045.
[26] S. Saikia, N.K. Mahnot, C.L. Mahanta, Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying, Food Chem. 171 (2015) 144–152. doi:10.1016/j.foodchem.2014.08.064.
[27] G.B. Celli, A. Ghanem, M.S.-L. Brooks, Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles, J. Berry Res. 6 (2016) 1–11. doi:10.3233/JBR-150107.
[28] M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, M.J. Núñez, Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace, J. Agric. Food Chem. 53 (2005) 2111–2117. doi:10.1021/jf0488110.
[29] Q. Wang, S. Ma, B. Fu, F.S.C. Lee, X. Wang, Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid (GA) from licorice (Glycyrrhiza uralensis Fisch), Biochem. Eng. J. 21 (2004) 285–292. doi:10.1016/j.bej.2004.06.002.
[30] M. Valipour, Process conditions optimization in the polyphenolic extraction ( one- and multi-counter current ) from Iranian industrial apple pomace, Chemistry MSc thesis, Iranian Research Organization for Science and Technology, 2016.
[31] U. Bilati, E. Allémann, E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci. 24 (2005) 67–75. doi:10.1016/j.ejps.2004.09.011.
[32] S. Galindo-Rodriguez, E. Allémann, H. Fessi, E. Doelker, Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods, Pharm. Res. 21 (2004) 1428–1439. doi:10.1023/B:PHAM.0000036917.75634.be.
[33] S.A. Guhagarkar, V.C. Malshe, P. V Devarajan, Nanoparticles of polyethylene sebacate: a new biodegradable polymer., AAPS PharmSciTech. 10 (2009) 935–42. doi:10.1208/s12249-009-9284-4.
[34] M.E. Matteucci, M.A. Hotze, K.P. Johnston, R.O. Williams, Drug nanoparticles by antisolvent precipitation: Mixing energy versus surfactant stabilization, Langmuir. 22 (2006) 8951–8959. doi:10.1021/la061122t.
[35] M.R. Kulterer, M. Reischl, V.E. Reichel, S. Hribernik, M. Wu, S. Köstler, R. Kargl, V. Ribitsch, Nanoprecipitation of cellulose acetate using solvent/nonsolvent mixtures as dispersive media, Colloids Surfaces A Physicochem. Eng. Asp. 375 (2011) 23–29. doi:10.1016/j.colsurfa.2010.11.029.
[36] E. Lepeltier, C. Bourgaux, P. Couvreur, Nanoprecipitation and the “Ouzo effect”: Application to drug delivery devices, Adv. Drug Deliv. Rev. 71 (2014) 86–97. doi:10.1016/j.addr.2013.12.009.
[37] K. Fernández, J. Aburto, C. von Plessing, M. Rockel, E. Aspé, Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts, Food Chem. 207 (2016) 75–85. doi:http://dx.doi.org/10.1016/j.foodchem.2016.03.083.
[38] A.B. Shirode, D.J. Bharali, S. Nallanthighal, J.K. Coon, S.A. Mousa, R. Reliene, Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention, Int. J. Nanomedicine. 10 (2015) 475–484. doi:10.2147/IJN.S65145.
[39] J.A. Heredia-Guerrero, J.J. BenÃtez, E. DomÃnguez, I.S. Bayer, R. Cingolani, A. Athanassiou, A. Heredia, Infrared and Raman spectroscopic features of plant cuticles: a review, Front. Plant Sci. 5 (2014) 305. doi:10.3389/fpls.2014.00305.
[40] S.K. Pandey, D.K. Patel, R. Thakur, D.P. Mishra, P. Maiti, C. Haldar, Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation, Int. J. Biol. Macromol. 75 (2015) 521–529. doi:10.1016/j.ijbiomac.2015.02.011.
[41] E.S. Lee, Z. Gao, Y.H. Bae, Recent progress in tumor pH targeting nanotechnology, J. Control. Release. 132 (2008) 164–170. doi:10.1016/j.jconrel.2008.05.003.