CFD simulation of pervaporation of organic aqueous mixture through silicalite nano-pore zeolite membrane

Document Type : Research Paper


1 Department of Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran

2 Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran


Nanopore silicalite type membranes were prepared on the outer surface of a porous-mullite tube by in situ liquid phase hydrothermal synthesis. The hydrothermal crystallization was carried out under an autogenously pressure, at a static condition and temperature of 180 °C with tetrapropylammonium bromide (TPABr) as a template agent. The molar composition of the starting gel of silicalite zeolite membrane was: Na2O/SiO2=0.287-0.450, H2O/SiO2 = 8-15, TPABr/SiO2 = 0.01-0.04. The zeolites calcinations were carried out in air at 530 °C, to burn off the template (TPABr) within the zeolites. X-ray diffraction (XRD) patterns of the membranes consisted of peaks corresponding to the support and zeolite. The crystal species were characterized by XRD, and morphology of the supports subjected to crystallization was characterized by scanning electron microscopy (SEM). Performance of silicalite nanoporous membranes was studied for separation of water-unsymmetrical dimethylhydrazine (UDMH) mixtures using pervaporation (PV). Finally, a comprehensive steady state model was developed for the pervaporation of a water-UDMH mixture by COMSOL Multiphysics software version 5.2. The developed model was strongly capable of predicting the effect of various dimensional factors on concentration and velocity distribution within the membrane module. The best silicalite zeolite membranes had a water flux of 3.34 kg/m2.h at 27 °C. The best PV selectivity for Silicalite membranes obtained was 53. 


  • Silicalite nanopore zeolite membranes were synthesized by in-situ liquid phase hydrothermal method and studied by XRD and SEM techniques.
  • Pervaporation tests were carried out for evaluation of the performance of the membranes in the separation of water-UDMH mixtures.
  • A comprehensive steady state model was developed for CFD simulation of pervaporation using the finite element method.


[1] R. Ravindra K.R. Krovvidi, A.A. Khan, A.K. Rao, D.S.C. studies of states of water, hydrazine and
hydrazine hydrate in ethyl cellulose membrane,Polymer, 40 (1999) 1159-1165.
[2] R. Ravindra, A. Kameswara, A. Khan, A qualitative evaluation of water and monomethyl hydrazine in ethyl cellulose membrane, J. Appl. Polym. Sci. 72 (1999) 689-700.
[3] S. Sridhar, G. Susheela, G.J. Reddy, A.A. Khan, Cross linked chitosan membranes: characterization and study of dimethylhydrazine dehydration by pervaporation, Polym. Int. 50 (2001) 1156-1165.
[4] S. Moulik, K.P. Kumar, S. Bohra, S. Sridhar, Pervaporation performance of PPO membranes in dehydration of highly hazardous MMH and UDMH liquid propellants, J. Hazard. Mater. 288 (2015) 69-79.
[5] Y-L. Liao, C-C. Hu, J-Y. Lai, Y-L. Liu, Crosslinked polybenzoxazine based membrane exhibiting in-situ self-promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions, J. Membrane Sci. 531 (2017) 10-15.
[6] Y.M. Xu, T-S. Chung, High-performance UiO-66/polymide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation, J. Membrane Sci. 531 (2017) 16-26.
[7] S. Zhang, Y. Zou, T. Wei, C. Mu, X. Liu, Z. Tong, Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes, Sep. Purif. Technol.173 (2017) 314-322.
[8] J. Liu, R. Bernstein, High-flux thin-film composite polyelectrolyte hydrogel membranes for ethanol dehydration by pervaporation, J. Membrane Sci. 534 (2017) 83-91.
[9] T. Uragami, M. Banno, T. Miyata, Dehydration of an ethanol/water azeotrope through alginate- DNA membranes cross-linked with metal ions by pervaporation, Carbohyd. Polym. 134 (2015) 38-45.
[10] D.A. Fedosov, A.V. Smirnov, V.V. Shkirskiy, T. Voskoboynikov, I.I. Ivanova, Methanol dehydration in NaA zeolite membrane reactor, J. Membrane Sci. 486 (2015)189-194.
[11] R. Ravindra, S. Sridhar, A.A. Khan, A.K. Rao, Pervaporation of water, hydrazine and monomethylhydrazine using ethyl cellulose membranes, Polymer, 41 (2000) 2795-2806.
[12] S. Sridhar, R. Ravindra, A.A. Khan, Recovery of monomethylhydrazine liquid propellant by pervaporation technique, Ind. Eng. Chem. Res. 39 (2001) 2485-2490.
[13] X. Li, I. Kresse, Z.K. Zhou, J. Springer, Effect of temperature and pressure on gas transport in ethyl cellulose membrane, Polymer, 42 (2001) 6801-6810.
[14] Y-H. Huang, Q-F. An, T. Liu, W-S. Hung, C-L. Li, S-H. Huang, C-C. Hu, K-R. Lee, J-Y. Lai, Molecular dynamics simulation and positron annihilation lifetime spectroscopy: Pervaporation dehydration process using polyelectrolyte complex membranes, J. Membrane Sci. 451 (2014) 67-73.
[15] M. Jain, D. Attarde, S.K. Gupta, Removal of thiophenes from FCC gasoline by using a hollow fiber pervaporation module: Modeling, validation and influence of module dimensions and flow directions, Chem. Eng. J. 308 (2017) 632-648.
[16] S. Moulik, S. Nazia, B. Vani, S. Sridhar, Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane, Sep. Purif. Technol. 170 (2016) 30-39.
[17] N.S. Prasad, S. Moulik, S. Bohra, K.Y. Rani, S. Sridhar, Solvent resistant chitosan / poly(ether-blockamide) composite membranes for pervaporation of n-methyl-2-pyrrolidone / water mixtures, Carbohyd. Polym. 136 (2016) 1170-1181.
[18] M. Kazemimoghadam, A. Pak, T. Mohammadi, Dehydration of water / 1-1-dimethylhydrazine mixtures by zeolite membranes, Micropor. Mesopor. Mat. 70 (2004) 127-134.
[19] L. Zhoua, T. Wang, Q.T. Nguyenc, J. Li, Y. Long, Z. Ping, Cordierite-supported ZSM-5 membrane: Preparation and pervaporation properties in the dehydration of water-alcohol mixture, Sep. Purif. Technol. 44 (2005) 266-270.
[20] F. Akhtar, E. Sjöberg, D. Korelskiy, M. Rayson, J. Hedlund, L. Bergström, Preparation of graded silicalite-1 substrates for all-zeolite membranes with excellent CO2/H2 separation performance, J. Membrane Sci. 493 (2015) 206-211.
[21] G. Li, E. Kikuchi, M. Matsukata, A study on the pervaporation of water-acetic acid mixtures through ZSM-5 zeolite membranes, J. Membrane Sci. 218 (2003) 185-194.
[22] J. LP, Q.T. Nguyen, L.Z. Zhou, T. Wang, Y.C. Long, Z.H. Ping, Preparation and properties of ZSM- 5 zeolite membrane obtained by low-temperature chemical vapor deposition, Desalination, 147 (2002) 321-326.
[23] T. Masuda, S-H Otani, T. Tsuji, M. Kitamura, S.R. Mukai, Preparation of hydrophilic and acid-proof silicalite-1 zeolite membrane and its application to selective separation of water from water solutions of concentrated acetic acid by pervaporation, Sep. Purif. Technol. 32 (2003) 181-189.
[24] B. Oonkhanond, M.E. Mullins, The preparation and analysis of zeolite ZSM-5 membranes on porous alumina supports, J. Membrane Sci. 194 (2001) 3-13.
[25] M. Nomura, T. Yamaguchi, S-I Nakao, Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes, J. Membrane Sci. 187 (2001) 203-212.
[26] M. A. Baig, F. Patel, K. Alhooshani, O. Muraza, E.N. Wang, T. Laoui, In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support, J. Cryst. Growth, 432 (2015) 123-128.
[27] T.C. Bowen, R.D. Noble, J.L. Falconer, Fundamentals and applications of pervaporation through zeolite membranes, J. Membrane Sci. 245 (2004) 1-33.
[28] C. Algieri, P. Bernardo, G. Golemme, G. Barbieri, E. Drioli, Permeation properties of a thin silicalite-1 (MFI) membrane, J. Membrane Sci. 222 (2003) 181-190.
[29] M. Nomura, T. Bin, S-I Nakao, Selective ethanol extraction from fermentation broth using a silicalite membrane, Sep. Purif. Technol. 27 (2002) 59-66.
[30] S. Nai, X. Liu, W. Liu, B. Zhang, Ethanol recovery from its dilute aqueous solution using Fe-ZSM-5 membranes: Effect of defect size and surface hydrophobicity, Micropor. Mesopor. Mat. 215 (2015) 46-50.
[31] A.M. Avila, Z. Yu, S. Fazli, J.A. Sawada, S.M. Kuznicki, Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation, Micropor. Mesopor. Mat. 190 (2014) 301-308.
[32] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edition, John Wiley & Sons, New York, 1960, pp. 780.
Volume 3, Issue 3
September 2017
Pages 121-132
  • Receive Date: 29 May 2017
  • Revise Date: 07 August 2017
  • Accept Date: 03 October 2017
  • First Publish Date: 03 October 2017