[1] S.D. Aziz, S. Chandra, Impact, recoil and splashing of molten metal droplets, Int. J. Heat Mass Tran. 43 (2000) 2841-2857.
[2] A.M. Worthington, The splash of a drop, Society for Promoting Christian Knowledge, London, 1895.
[3] A. Worthington, On the forms assumed by drops of liquids falling vertically on a horizontal plate, Proc. R. Soc. Lond., 25 (1876) 261-272.
[4] O.G. Engel,Waterdrop collisions with solid surfaces, J. Res. NBS, 5 (1955) 281-298.
[5] C. Stow, M. Hadfield, An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface, Proc. R. Soc. Lond. A 373 (1981) 419-441.
[6] G. Montavon, S. Sampath, C. Berndt, H. Herman, C. Coddet, Effects of the spray angle on splat morphology during thermal spraying, Surf. Coat. Technol. 91 (1997) 107-115.
[7] S. Thoroddsen, J. Sakakibara, Evolution of the fingering pattern of an impacting drop, Phys. Fluids 10 (1998) 1359.
[8] Y. Hardalupas, A. Taylor, J. Wilkins, Experimental investigation of sub-millimetre droplet impingement on to spherical surfaces, Int. J. Heat Fluid Fl. 20 (1999) 477-485.
[9] S. Asadi, M. Passandideh-Fard, M. Moghiman, Numerical and analytical model of the inclined impact of a droplet on a solid surface in a thermal spray coating process, Iran. J. Surf. Eng. 4 (2008) 1-14.
[10] J. Liu, H. Vu, S.S. Yoon, R.A. Jepsen, G. Aguilar, Splashing phenomena during liquid droplet impact, Atomization Spray. 20 (2010) 297-310.
[11] S. Asadi, Simulation of nanodroplet impact on a solid surface, Inter. J. Nano Dim. 3 (2012) 19-26.
[12] H. Li, S. Mei, L. Wang, Y. Gao, J. Liu, Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment, Int. J. Heat Fluid Fl. 47 (2014) 1-8.
[13] G. Liang, Y. Guo, Y. Yang, N. Zhen, S. Shen, Spreading and splashing during a single drop impact on an inclined wetted surface, Acta Mech. 224 (2013) 2993-3004.
[14] G. Liang, Y. Yang, Y. Guo, N. Zhen, S. Shen, Rebound and spreading during a drop impact on wetted cylinders, Exp. Therm. Fluid Sci. 52 (2014) 97-103.
[15] H. Akaike, Information theory and an extension of the maximum likelihood principle, Proceeding of the Second International Symposium on Information Theory, Akademinai Kiado, Budapest, 1973, pp. 267- 281.
[16] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (1978) 461-464.
[17] B. Pradhan, D. Kundu, On progressively censored generalized exponential distribution, Test 18 (2009) 497-515.
[18] A. Asgharzadeh, R. Valiollahi, Point Prediction for the Proportional Hazards Family under Progressive Type-II Censoring,J. Iran. Stat. Soc. 9 (2010) 127-148.
[19] R.R.A. Awwad, M.Z. Raqab, I.M. Al-Mudahakha, Statistical inference based on progressively type II censored data from Weibull model, Commun. Stat. Simulat. 44 (2015) 2654-2670.
[20] H. Ng, Parameter estimation for a modified Weibull distribution, for progressively type-II censored samples, IEEE T. Reliab. 54 (2005) 374-380.
[21] I.W. Burr, Cumulative frequency functions, Ann. Math. Stat. 13 (1942) 215-232.
[22] M.K. Rastogi, Y.M. Tripathi, Estimating the parameters of a Burr distribution under progressive type II censoring, Stat. Methodol. 9 (2012) 381-391.
[23] H. Panahi, A. Sayyareh, Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring, J. Appl. Stat. 41 (2014) 215-232.
[24] A. Abd-Elfattah, A.S. Hassan, S. Nassr, Estimation in step-stress partially accelerated life tests for the Burr type XII distribution using type I censoring, Stat. Methodol. 5 (2008) 502-514.
[25] B. Abbasi, S.Z. Hosseinifard, D.W. Coit, A neural network applied to estimate Burr XII distribution parameters, Reliab. Eng. Syst. Safe. 95 (2010) 647- 654.
[26] N.L.Johnson, S. Kotz, N.Balakrishnan,Continuous Univariate Distributions, Wiley Ser. Prob. Stat., vol. 1, 1994.
[27] R Development Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria : The R Foundation for Statistical Computing, (2011). http://www.R-project.org/.
[28] M.V. Aarset, How to identify a bathtub hazard rate, IEEE T. Reliab. 36 (1987) 106-108.
[29] A. Asgharzadeh, R. Valiollahi, Point Prediction for the Proportional Hazards Family under Progressive Type-II Censoring, J. Iran. Stat. Soc. 9 (2010) 127- 148.
[30] M.Z. Raqab, H.N. Nagaraja, On some predictors of future order statistics, Metron, 53 (1995) 185-204.
[31] D. Kundu, B. Pradhan, Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring, Commun. Stat.-Theor. M. 38 (2009) 2030-2041.