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•	 Inference about the splat particle 
splashing data which sprayed with 
a normal angle.

•	 Perform the number of model 
selection tests to determine the 
appropriate probability model under 
complete and progressive censored 
sample.

•	 Study of different methods for 
predicting the missing splat particle 
splashing data.
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Splashing of splat particles is one of the most important phenomena in industrial 
processes such as thermal spray coating. The data relative to the degree of splashing 
of splats sprayed with a normal angle are commonly characterized by the Weibull 
distribution function. In this present study, an effort has been made to show that the 
Burr distribution is better than the Weibull distribution for presenting the distribution 
of the degree of splashing. For this purpose, the Burr Type XII distribution and Weibull 
distribution are compared using different criteria. Furthermore, because of the great 
importance of statistical prediction of censored data in reducing costs and improving 
quality of the coating process, we consider different predictors of this data based on 
a progressively censored sample. For computing the prediction values we obtain the 
maximum likelihood estimates using the Expectation-Maximization (EM) algorithm. 
An important implication of the present study is that the Burr Type XII distribution more 
appropriately described the degree of splashing data. Therefore, the Burr Type XII can 
be used as an alternative distribution that adequately describes the splashing data and 
thereby predicts the censored data.
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1. Introduction

Thermal sprayed coatings are widely used to protect 
components exposed to corrosion, wear or heat. The 
mechanical properties of coatings are known to depend 
strongly on the shape of splat particles formed by 
individual particles as they impact and freeze. As a 
good coated surface is extremely important in industry, 
one of the most important phenomena, due to its impact 
on the deterioration of the coated surface, is particle 
splashing. Splashing occurs when a single particle 
breaks up on impact producing secondary, or satellite, 
particles. Figure 1 illustrates splashing via a sequence of 
photographs of the impact of molten tin particles onto a 
hot surface [1]. Splashing degrade coating quality since 
they leave voids in the deposit, increasing its porosity 
and reducing its strength. The physical mechanisms 
of splashing are still not completely understood and 
splash study is an extremely interesting and attractive 
phenomenon. Moreover, prediction of particle splashing 
can potentially reduce the cost of the development of 
new coating considerably. 

Fig. 1. Splashing of molten tin droplet on a stainless steel surface [1].

The first study of particle fingering and splashing is 
the remarkable work of Worthington [2,3] published 
more than a century ago. He drew interesting pictures 
from direct visual observations of the impact of a 
mercury drop on a glass plate. More than a half century 
after Worthington, Engel [4] studied the impact of water 
droplets onto various surfaces, with application to the 
erosion of aircraft components due to rain drop impact. 
A small solid surface roughness has been found to have 
an important influence on the limiting conditions of the 
onset of splashing [5]. Montavon et al. [6] studied the 
effects of spray angle on the morphology of thermally 
sprayed particles impinging on polished substrates. 
They evaluated the degree of splashing of splats as a 
function of their equivalent diameter for 90o and 30o 

spray angles. Thoroddsen and Sakakibara [7] considered 
the evolution of the fingering pattern at the edge 
of drop during the impact of a water drop on a glass 
plate. They observed that systematic changes in frontal 
shapes take place during the expansion. Hardalupas 
et al. [8] examined the impact of a stream of particles 
onto stainless steel, to examine the influence of surface 
curvature. Aziz and Chandra [1] studied the impact 
and solidification of molten tin particles on a stainless 
steel surface. They photographed particle impact and 
measured splat diameter and liquid-solid contact angle 
from these photographs and used a simple energy 
conservation model to predict the maximum spread of 
particles during impact. 
Asadi et al. [9] extended the numerical and analytical 

model of the inclined impact of a plasma particle on a 
solid surface in a thermal spray coating process. The 
effects of particle velocity, impact angle, and ambient 
gas pressure (or density) on the threshold of splashing 
and the motion of the ambient gas surrounding the 
particle were examined by Liu et al. [10]. Asadi [11] 
applied a modified computational fluid dynamics and 
molecular kinetic theory (CFD-MK) method to model 
the spread and splash of nanoparticle impact on a flat 
surface. Li et al. [12] estimated impact energy stored 
in the splash structures via a theoretical model and 
several morphological parameters. They found that 
the particle size and the impact velocity displayed 
similar proportional trends with respect to the splashing 
height, but did not accompany the secondary particle 
separation; also the increase of pool temperature 
dramatically intensified the splashing effect, with the 
fusiform secondary particle detached from a central 
jet. Liang et al. [13] examined spreading and splashing 
processes during a single liquid particle impact on an 
inclined wetted surface by using a high-speed digital 
camera. They observed that both surface tension and 
viscosity can greatly affect the spreading and splashing 
behaviors. Liang et al. [14] studied rebound and 
spreading behaviors during a single particle impact on 
wetted cylindrical surfaces and discussed deformation 
factor with the critical Weber numbers. While much 
research has been done on the study of particles 
splashing, less attention has been paid to the distribution 
modeling and statistical prediction of this phenomenon.
In the present work, we consider the model selection 

and prediction of splat particle splashing data obtained 
by Montavon et al. [6] . We observed that the Weibull 
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distribution has been used as the statistical distribution 
for modeling the engineering data. We want to answer 
this question, “Is there a more appropriate statistical 
distribution?”. Thus, we use different methods, such as 
Kolmogorov-Smirnov (K-S) distance, Akaike information 
criterion [15], Baysian information criterion [16], and 
the total time on test (TTT) transform and maximum 
likelihood criterion, to show the appropriateness of the 
Burr distribution in the particle splashing data. Since 
the experimenter may not always obtain complete 
information on the data in many experimental studies, 
data obtained from such experiments are called censored 
data. Type I and Type II censoring schemes are the two 
most common and popular censoring schemes, but these 
censoring schemes do not have the flexibility of allowing 
the removal of units at points other than the terminal point 
of the experiment. For this reason, in the last few years the 
progressive censoring scheme has received considerable 
attention in applied science. This scheme allows one 
to remove experimental units at points other than the 
terminal point of the experiment. Several authors have 
considered different aspects of this censoring scheme; see 
for example [17-20]. Prediction of censored observation 
based on the current available data is one of the important 
problems in engineering experiments. We know that in 
experiments some of the splashing data are missing. 
Thus, the second purpose of this paper is to predict 
future splashing data under the progressive censoring 
scheme. We obtain the conditional median predictor 
and prediction interval based on the pivotal method. 
For obtaining the prediction method, we substitute the 
unknown parameters with their maximum likelihood 
estimates under the progressive censoring scheme. It is 
observed the maximum likelihood estimators (MLE’s) 
cannot be obtained in closed form. So, we propose to use 
the EM algorithm to compute the maximum likelihood 
estimators. The EM algorithm is a very powerful and 
useful tool for analyzing the censored data. 

2. Two rival models

In this section we briefly describe Burr Type XII and 
Weibull distributions as the rival models.

2.1. Burr Type XII distribution

Burr [21] introduced twelve cumulative distribution 
functions with the primary purpose of fitting distributions 

distributions to real data. One of the most important of 
them is the Burr Type XII distribution. The cumulative 
distribution function and probability density function of 
the Burr Type XII are given by, respectively

	 	 	 	 	                     (1) 

Here a and b are the two shape parameters. The 
shape of the hazard rate function of the Burr Type XII 
distribution depends only on parameter b. For b>0, 
the hazard rate is eventually decreasing. For b>0, the 
hazard rate is a unimodal function whereas for b≤0, 
it is decreasing. Thus the shape b parameter  plays an 
important role in the distribution. Its capacity to assume 
various shapes often permits a good fit when used to 
describe biological, clinical, engineering or other 
experimental data. It also approximates the distributional 
form of normal, lognormal, gamma, logistic, and 
several Pearson-Type distributions. For instance, the 
normal density function may be approximated as a Burr 
Type XII distribution with b=4.8544  and a=6.2266 and 
the gamma distribution with shape parameter 16 can be 
approximated as a Burr Type XII distribution with b=3 
and a=6, and the log-logistic distribution is a special 
case of the Burr Type XII distribution. Extensive work 
has been done on the Burr Type XII distribution, see for 
example [22-25].

2.2. Weibull distribution

The Weibull distribution is one of the most popular 
distributions in analyzing lifetime data. The two 
parameter Weibull distribution (W) with the shape 
parameter a>0 and scale parameter b>0 has the 
probability density function as;

	 	 	 	 	 	        (2)

where, a and b are the shape and scale parameters, 
respectively. If x~Weibull(a,b), then the cumulative 
distribution function, reliability function and hazard 
function are
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of the KL divergence is Eh(log f q(X)) which has an 
estimator as

ˆ

1

1 log ( )n

n

i
i

f x
n

θ

=
∑ 	 	 	 	       (4)

where,                      is the maximum likelihood estimator 
(MLE) of θ = (α,β). It can be considered as an estimator 
of the divergence between the true density and the model. 
Akaike introduced his criterion to model selection as

                                   	 	                                            (5)

where, p is the number of parameters in the model. 
Now choose the family F if AIC f  < AIC g  otherwise 
choose family G. For computing the maximum 
likelihood estimators of unknown parameters of the 
mentioned distributions (Burr Distribution and Weibull 
distribution), one can use the inbuilt packages like nlm() 
and optim() of the R-software [27].

3.3. Bayesian information criterion

The Bayesian information criterion (BIC) is one of 
the important criteria for determining the best model for 
a given data. One major difference of this criterion is 
the different penalty term that it uses. Thus BIC [16] is 
defined as

                                                      	                                (6)

where, p and n are the number of parameters and 
sample size, respectively. The BIC is based on Bayesian 
probability and can be applied to models estimated by 
the maximum likelihood method. We choose family F if  
BIC f  < BIC g ; otherwise we choose family G.

3.4. The Total Time On Test (TTT) transform

The total time on test (TTT) transform is a convenient 
tool for examining the nature of the hazard rate and 
accordingly checking for the adequacy of a model to 
represent the failure behavior of the data. The TTT 
transform of a probability distribution with absolutely 
continuous distribution function F(.) is given by

 

where, [ ]
1( )1

0
( ) 1 ( ) ; 				0 1

F x

FH x F u du u
−

− = − ≤ ≤∫ . The 

and 

 
respectively. A detailed discussion of the W distribution 
has been provided by [26].

3. Different Criteria for model selection

In this section we describe different available 
criteria for choosing the best fitted model to a 
given dataset. Suppose there are two families, say, 

{ }(.), ( )pF f R fθ θ= ∈ =  and { }(.), ( )qG g R gθ θ′ ′= ∈ = , 
the problem is to choose the correct family for a given 
dataset { }1,..., .nx x  The following criteria can be used for 
model selection.

3.1. Kolmogorov-Smirnov (K-S) distance

The K-S distance is one of the important distances 
between two distribution functions, say F and G, and it 
can be described as follows;

      	 	 	 	 	                    (3)

To implement this procedure, a candidate from each 
parametric family that has the smallest K-S distance 
should be found and then the different best fitted 
distributions should be compared.

3.2. Akaike’s information criterion

Consider a sample of independently identically 
distributed (i.i.d.) random variables, X1,...,Xn having 
the probability density function h(.)=h. The Kullback-
Leibler (KL) information in favor of h against f q is 
defined as
    

We have KL(h,f q) ≥ 0 and KL(h,f q)=0 , which implies 
that h=f q. The KL divergence is often intuitively 
interpreted as a distance between the two probability 
measures, but this is not mathematically a distance; in 
particular, the KL divergence is not symmetric. Akaike 
[15] introduced the Akaike information criterion (AIC) 
to select the best model under parsimony. The goal of 
AIC is to minimize the KL divergence of the selected 
model from the true model. Notice that the relevant part 

1( ) , 		 0, 0, 0h x x xbab a b−= ≥ > >
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corresponding empirical version of the scaled TTT 
transform is defined as
	 	 	 	 	 	       (7)

It has been shown by Aarset [28] that the TTT 
transform is convex (concave) if the hazard rate is 
decreasing (increasing). In addition, for a distribution 
with a bathtub (unimodal) failure rate the scaled TTT 
transform is first convex (concave) and then concave 
(convex). In this example, the scaled TTT transform 
of the data shows that the empirical hazard function is 
unimodal.

3.5. Maximum Likelihood Criterion (MLC)

Suppose, n̂θ and n̂θ ′ are the MLEs of θ and θ', 
respectively. The maximum likelihood criterion is 
defined as
                                                           	 	 	

	 	 	 	    	                    (8)

Then we choose (f ) or (g) as the preferred model 
if ˆ ˆ( , )n nT θ θ ′ is greater than zero or less than zero, 
respectively.

4. Results and discussion

In this section, we consider the degree of splat particle 
splashing. A particle splashes when it hits a solid body 
with adequate rate. Immediately after a molten particle 
impacts on a surface a skinny liquid film jets out radially 
from under it. The degree of splat splashing is defined as 

                                                                                     (9)

where, S is the area of the selected feature and R is the 
perimeter to area ratio. The degrees of particle splashing 
data are reported in different spray angles. We use 
the data of particle normal impact on a solid surface. 
The mean, standard deviation and the coefficient of 
skewness are calculated as 1.2052, 0.7104 and 2.3326, 
respectively. The measure of skewness indicates that the 
data are positively skewed. For comparison purposes, 
we have fitted Burr XII and Weibull distributions to the 
complete observation. The plot of the empirical and 
the fitted cumulative distribution functions for these 

distributions and the fitted probability distribution 
functions (PDFs) and the relative histogram for the 
degree of splashing are presented in Figures 2 and 3, 
respectively. Theses plots indicate that the fitted Burr XII 
distribution is better than the fitted Weibull distribution. 
The estimated parameter values, AIC values, BIC 
values Kolmogorov-Smirnov (K-S) distances and the 
corresponding p-value are presented in Table 1. From 
the K-S distances, AIC, BIC values, MLC and p-values 
of Table 1, it is quite clear that the Burr XII model with 
estimated parameters    provides a much better fit than 
the Weibull distributions. We also present the percentile-
percentile (P-P) plots of the Burr XII and Weibull 
distributions for the degree of splashing data in Figure 
4. This plot shows a strong relationship supporting the 
appropriateness of the Burr XII distribution.  Also, we 
consider a graphical method based on total time on test 
(TTT) transform. The plot of the scaled TTT transform 
of this data set, Figure 5, indicates that the empirical 
hazard function is unimodal; therefore, it is reasonable 
to use a BXII distribution to analyze the data.

Fig. 2. Empirical function and the fitted functions for degree of  
splashing.

Fig. 3. The fitted PDF and relative histogram for the degree of 
splashing.

Fig. 4. The P-P plots for degree of splashing.
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Fig. 5. The scaled TTT transform of degree of splashing.

5. Different Prediction Methods

Often do not have all the data in engineering sciences. 
In other words, some of the data are missing (censoring). 
Prediction of censored data based on observed data 
is a very interesting topic in applied science. We 
know that the splashing data follows a progressive 
censoring scheme. This censoring can be described as 
follows. Consider an experiment in which n units are 
placed on an experimental test and only m(<n) are 
completely observed until failure. The censoring occurs 
progressively in m stages. These m stages offer failure 
times of the m observed units. At the time of the first 
failure (the first stage) X1:m:n, r1 of the n-1 units are 
randomly removed (censored) from the experiment. 
Similarly, at the time of the second failure (the second 
stage) X2:m:n, r2 of the n-2-r1 units are randomly removed 
(censored) from the experiment. Finally, at the time of 
the mth failure (the mth stage) Xm:m:n, all the remaining 
rm=n-m-(r1+r2+…+rm-1) units are removed from the 
experiment. We will refer to this as the progressive 
censoring scheme (r1, r2, …, rm). Now, let X1:m:n, X2:m:n,…, 
Xm:m:n denote a progressively censored sample from the 
Burr XII model, with (r1, r2, …, rm) being the progressive 
censoring scheme. For simplicity, we replace Xi:m:n by Xi 
throughout the paper. Our interest is to predict Z=Xi,(s); 
s=1, 2, …, ri; i=1, 2, …, m in all m stages of censoring 
based on the observed progressively censored sample 
x=(x1, …, xm). For this purpose, first we estimate the 

unknown parameters of Burr XII distribution using the 
maximum likelihood method. The likelihood function 
based on a progressive censored sample from BXII(α,β) 
is given by

and the corresponding log likelihood function is

                                                    		 	     (10)

Taking derivatives with respect to α and β of (10) and 
putting then equal to zero we obtain

                                 	     	                                                   (11)

                                                                                  (12)

Maximum likelihood estimates of α and β, say â  
and b̂ respectively, can be obtained by solving these 
two likelihood equations. But the explicit solutions 
of (11) and (12) cannot be obtained. We propose to 
use the EM algorithm to compute the MLEs of the 
unknown parameters which involves solving two one 
dimensional optimization problems rather than one 
two dimensional problem (see Appendix). Now, we 
want to evaluate the different methods of the prediction 
of Z=Xi,(s); s=1, 2, …, ri; i=1, 2, …, m [29]. We know 
that the conditional distribution of Z given X  is just 
the distribution of Z given Xi=xi due to the Markovian 
property of progressively censored order statistics. This 
indicates that the density of Z given X x=  is the same 
as the density of the sth order statistic out of ri units from 
the left truncated distribution with the density function

	 	 	 	 	 	     (13)

where

Table 1. Estimated parameters, K-S distances and AIC values for different distribution functions of the degree of splashing ‎‎data.

Distribution Estimated parameters  K-S (p-value) AIC BIC MLC

Weibull α=0.56168  ,  β=1.8533 0.1134 (0.4237) 113.6794 117.86810
7.50859

Burr XII α=0.89478  ,  β=3.66013 0.0744 (0.8944) 98.4622 102.65090
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and

( ) 1 (1 )i iF x xb a−= − +

Thus, the conditional density of Z=Xi,(s) given Xi=xi for 
the Burr distribution is given by

	 	 	 	 	 	     
	 	 	 	 	 	      (14)

5.1. Conditional Median Predictor

The median of the distribution of  Z=Xi,(s) given Xi=xi 
whose density is given in (14), is called the conditional 
median predictor (CMP) [30]. On the other hand, a 
statistic Ẑ  is called a conditional median predictor, if 

 
ˆ ˆ( ) ( )P Z Z X x P Z Z X x≤ = = ≥ =

So
 

It is clear that the distribution of 11
1 i

Z
x

ab

b

−
 +

−  + 
given 

Xi=xi is a Beta(s, ri-s+1) distribution with a pdf of
 

So, the conditional median predictor can be written as

                                        	 	                   (15)

Where, B has a Beta distribution with shape parameters 
s and ri-s-1, respectively.

5.2. Pivotal Quantity

In this case, our interest is to predict Z=Xi,(s) using the 

pivotal method. So, we choose 11
1 i

ZW
x

ab

b

−
 +

= −  + 
 as a 

pivotal quantity for obtaining the prediction interval for 
Z. Therefore, the 100(1 )%−℘  prediction interval for 
the order statistic Z is given by eq. (16), where, /2℘Β is 
the percentile of the Beta distribution with parameters 
s and ri-s+1, respectively. Prediction interval can be 
obtained by substituting the unknown parameters with 

	 	 	 	 	 	    (16)

their MLEs. Now, we consider the different prediction 
methods for predicting the censored splashing data. 
We propose that m=46  and consider the following two 
censoring schemes:

Censoring Scheme 1:  (19*0, 3, 10, 10*0, 1, 14*0 ). We 
obtain the following progressively censored sample: 
0.2783, 0.4688, 0.5054, 0.5128, 0.5201, 0.5274, 0.5494, 
0.5860, 0.5934, 0.6007, 0.6080, 0.6080, 0.6813, 0.7399, 
0.7545, 0.7838, 0.8278, 0.8644, 0.8791, 0.8864, 0.9010, 
C, 0.9304, 0.9377,  C ,0.9523, C, 0.9743, 0.9743, 0.9816, 
1.0183, 1.0476, 1.0549, 1.0915, 1.1135, 1.1355, 1.1721, 
1.2161, 1.2527, C, C, C, 1.4285, C, 1.4871, 1.4945, C, 
C, C, C, 1.6483, 1.6630, C, 1.8095, 2.0586, C, 2.4102, 
C, 3.1794, 4.6300.

Censoring Scheme 2:   (45*0, 14). We obtain the 
following progressively censored Sample:
0.2783, 0.4688, 0.5054, 0.5128, 0.5201, 0.5274, 0.5494, 
0.5860, 0.5934, 0.6007, 0.6080, 0.6080, 0.6813, 0.7399, 
0.7545, 0.7838, 0.8278, 0.8644, 0.8791, 0.8864, 0.9010, 
0.9157, 0.9304, 0.9377,  0.9377 ,0.9523, 0.9523, 0.9743, 
0.9743, 0.9816, 1.0183, 1.0476, 1.0549, 1.0915, 1.1135, 
1.1355, 1.1721, 1.2161, 1.2527, 1.3186, 1.3553, 1.4212, 
1.4285, 1.4652, 1.4871, 1.4945, C, C, C, C, C, C, C, C, 
C, C, C, C, C, C.
Here, C denotes the censored data. In both the 

schemes we have estimated the unknown parameters 
using the MLEs. For computing the MLEs we have 
used the EM algorithm. For schemes 1 and 2, the MLEs 
of (α,β) for the Burr XII distribution are (1.09106, 
3.37267), (1.52112, 4.33760), respectively. The results 
for different prediction methods and different censoring 
schemes are presented in Tables 2 and 3. From these 
tables, it is observed that the prediction methods work 
well.

6. Conclusion

In this paper, we compare Weibull distribution and 
Burr XII distribution for the degree of particle splashing 
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in thermal spray. Different plots and statistical criteria 
were used to identify the best fitted distribution 
for this data. Using several statistical criteria, like 
minimum K-S distance, minimum AIC value and 
minimum BIC value, the Burr XII distribution 
function appears to be a more appropriate statistical 
distribution function for this data. One important 

Table 2. Values of interval prediction method for Xi,(s); s=1, …, ri, (for scheme 1, i=20, 21, 32 and for scheme 2, i=46)  and their real values.

Scheme 1 Scheme 2

Xi,(s) Real values PI (Pivot) Xi,(s) Real values PI (Pivot)

X20,(1) 0.9157 (0.8832, 0.9517) X46,(1) 1.5604 (1.5287, 1,5935)

X20,(2) 0.9377 (0.9245, 0.9734) X46,(2) 1.5750 (1.5335, 1.5865)

X20,(3) 1.3186 (1.2789, 1.3395) X46,(3) 1.5750 (1.5335, 1.5865)

X21,(1) 1.3553 (1.3228,1.3497) X46,(4) 1.6190 (1.5758, 1,7169)

X21,(2) 0.9523 (0.9410, 0.9844) X46,(5) 1.6483 (1.6355, 1.6697)

X21,(3) 1.4212 (1.4052, 1.4637) X46,(6) 1.6630 (1.6067, 0.6954)

X21,(4) 1.4652 (1.4180, 1.4909) X46,(7) 1.7802 (1.7525, 1,8240)

X21,(5) 1.5604 (1.5356, 1.6011) X46,(8) 1.8095 (1.7843, 1,8278)

X21,(6) 1.7802 (1.7525, 1.8240) X46,(9) 2.0586 (2.0168, 2.1137)

X21,(7) 1.5750 (1.5199, 1.5747) X46,(10) 2.0805 (1.9956, 2.1754)

X21,(8) 2.0805 (1.9956, 2.1754) X46,(11) 2.4102 (2.3768, 2.4096)

X21,(9) 1.5750 (1.5199,1.5747) X46,(12) 2.4175 (2.3766, 2.4562)

X21,(10) 2.4175 (2.3766, 2.4562) X46,(13) 3.1794 (3.1547, 3.2128)

X32,(1) 1.6190 (1.5699, 1.7068) X46,(14) 4.6300 (4.6036, 4.4637)

Table 3. Values of point prediction method for Xi,(s); s=1, …, ri, (for scheme 1, i=20, 21, 32 and for scheme 2, i=46)  and their real values.

Scheme 1 Scheme 2

Xi,(s) Real values PI (CMP) Xi,(s) Real values PI (CMP)

X20,(1) 0.9157 0.9076 X46,(1) 1.5604 1.5546

X20,(2) 0.9377 0.9265 X46,(2) 1.5750 1.5637

X20,(3) 1.3186 1.3245 X46,(3) 1.5750 1.5637

X21,(1) 1.3553 1.3463 X46,(4) 1.6190 1.6045

X21,(2) 0.9523 0.9511 X46,(5) 1.6483 1.6247

X21,(3) 1.4212 1.4286 X46,(6) 1.6630 1.6739

X21,(4) 1.4652 1.4625 X46,(7) 1.7802 1.7748

X21,(5) 1.5604 1.5587 X46,(8) 1.8095 1.8137

X21,(6) 1.7802 1.7819 X46,(9) 2.0586 2.0455

X21,(7) 1.5750 1.5688 X46,(10) 2.0805 2.0732

X21,(8) 2.0805 2.0654 X46,(11) 2.4102 2.4269

X21,(9) 1.5750 1.5567 X46,(12) 2.4175 2.4020

X21,(10) 2.4175 2.4030 X46,(13) 3.1794 3.1663

X32,(1) 1.6190 1.5941 X46,(14) 4.6300 4.6451

problem in engineering sciences is the prediction of 
future observations. So, we reported the different 
prediction values of future observations and observed 
that these methods of prediction work well. Finally, 
we should mention that our results can be extended 
for the degree of particle splashing observed at other 
spray angles.

48



H. Panahi et al. / Journal of Particle Science and Technology 3 (2017) 41-50

Appendix 

The EM algorithm is an efficient iterative procedure 
to compute the maximum likelihood estimate in the 
presence of missing data and consists of an expectation 
step (E-step) and a maximization step (M-step). First, 
let us denote the observed and censored data by X = (X1,  
..., Xm) and Z = (Z1, ..., Zm), respectively, where each Zj 
is 1×rj vector Zj = (Zj1, ..., Zjrj) for j=1,..., m and they 
are not observable. The censored data vector Z can be 
thought of as missing data W= (X,Z) and   represents the 
complete data set. Therefore, the log-likelihood function  
Lc= (W; α, β) of the complete data after ignoring the 
constants can be written as:
  

                                    	 	 	    	    
	 	 	 	 	 	     (17)

E-step:
This step involves the computation of the conditional 

expectation of the log-likelihood with respect to the 
incomplete data given the observed data. For this 
purpose, we compute the pseudo log-likelihood function 
as:
 

	 	 	 	 	 	      (18)
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This step includes the maximization of the pseudo 

log-likelihood function (18). Therefore, if at the kth stage 
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the estimate of  (α, β) is (α(k), β(k)), then (α(k+1), β(k+1)) can 
be obtained by maximizing

	 	 	 	 	 	      (19)

with respect to α and β. Notice that the maximization 
of (19) can be obtained by different methods, such as, 
Kundu and Pradhan [31].
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