Improvement in photocatalysts and photocatalytic reactors for water and wastewater treatment: A review

Document Type : Review Article


Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran


During recent years, many advanced oxidation techniques have been investigated for water and wastewater treatment to overcome the shortage of clean water. This review summarizes the background and principles of photocatalysis applied as an advanced oxidation technology. In particular, this paper focuses on modification of photocatalysts with various dopants as well as the novel photocatalytic reactors to improve the oxidation efficiency of the pollutants in water and wastewater.


[1] S. Suárez, M. Carballa, F. Omil, J.M. Lema, How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?, Reviews in Environmental Science and Bio/Technology, 7 (2008) 125-138.
[2] C. Zwiener, S.D. Richardson, Analysis of disinfection by-products in drinking water by LC–MS and related MS techniques, TrAC Trends in Analytical Chemistry, 24 (2005) 613-621.
[3] T. Wintgens, F. Salehi, R. Hochstrat, T. Melin, Emerging contaminants and treatment options in water recycling for indirect potable use, Water Science and Technology, 57 (2008) 99-107.
[4] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8 (2004) 501-551.
[5] M. Pera-Titus, V. Garcıa-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, 47 (2004) 219-256.
[6] C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, Journal of Chemical Technology and Biotechnology, 83 (2008) 769-776.
[7] R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Photocatalytic degradation of organic Pollutants: A Review, in:Materials Science Forum, Trans Tech Publ, 2013, pp. 247-272.
[8] R.C. Martins, R.M. Quinta-Ferreira, Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: comparative studies, Chemical engineering science, 66 (2011) 3243-3250.
[9] S.-Y. Lee, S.-J. Park, TiO 2 photocatalyst for water treatment applications, Journal of Industrial and Engineering Chemistry, 19 (2013) 1761-1769.
[10] L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Applied Catalysis B: Environmental, 140 (2013) 559-587.
[11] J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres, Environmental science & technology, 42 (2008) 4902-4907.
[12] A. Mehdizadeh Dehkordi, An Experimental Investigation Towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics, (2014).
[13] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature, 388 (1997) 431-432.
[14] A. Sonune, R. Ghate, Developments in wastewater treatment methods, Desalination, 167 (2004) 55-63.
[15] T. Daimon, T. Hirakawa, M. Kitazawa, J. Suetake, Y. Nosaka, Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts, Applied Catalysis A: General, 340 (2008) 169-175.
[16] Y. Nosaka, T. Daimon, A.Y. Nosaka, Y. Murakami, Singlet oxygen formation in photocatalytic TiO2 aqueous suspension, Physical Chemistry Chemical Physics, 6 (2004) 2917-2918.
[17] H. Sakai, R. Baba, K. Hashimoto, A. Fujishima, A. Heller, Local Detection of Photoelectrochemically Produced H2O2 with a”Wired” Horseradish Peroxidase Microsensor, The Journal of Physical Chemistry, 99 (1995) 11896-11900.
[18] K. Ranjit, I. Willner, S. Bossmann, A. Braun, Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environmental science & technology, 35 (2001) 1544-1549.
[19] J.R. Harbour, M.L. Hair, Radical intermediates in the photosynthetic generation of hydrogen peroxide with aqueous zinc oxide dispersions, Journal of Physical Chemistry, 83 (1979) 652-656.
[20] A. Mills, S.-K. Lee, A web-based overview of semiconductor photochemistry-based current commercial applications, Journal of Photochemistry and Photobiology A: Chemistry, 152 (2002) 233-247.
[21] N.S. Lewis, Toward cost-effective solar energy use, science, 315 (2007) 798-801.
[22] S. Bouadila, S. Kooli, M. Lazaar, S. Skouri, A. Farhat, Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use, Applied Energy, 110 (2013) 267-275.
[23] htm, in.
[24] M. Heikkinen, H. Poutiainen, M. Liukkonen, T. Heikkinen, Y. Hiltunen, Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process, Mathematics and computers in simulation, 82 (2011) 450-459.
[25] A. Biati, F. Moattar, A. Karbassi, A. Hassani, Role of saline water in removal of heavy elements from industrial wastewaters, (2010).
[26] L. Tajeddine, M. Nemmaoui, H. Mountacer, A. Dahchour, M. Sarakha, Photodegradation of fenamiphos on the surface of clays and soils, Environmental Chemistry Letters, 8 (2010) 123-128.
[27] S. Kommineni, J. Zoeckler, A. Stocking, P.S. Liang, A. Flores, R. Rodriguez, T. Browne, P.R. Roberts, A. Brown, 3.0 Advanced Oxidation Processes, ______ Treatment Technologies for removal of Methyl Tertiary Butyl Ether (MTBE) fron drinking water: air stripping, Advanced Oxidation Process, Granular Actived carbon, Sinthetic resin sorbents, 2 (2000) 109-208.
[28] J. Zhang, K.-H. Lee, L. Cui, T.-s. Jeong, Degradation of methylene blue in aqueous solution by ozonebased processes, Journal of Industrial and Engineering Chemistry, 15 (2009) 185-189.
[29] S.C. Kwon, J.Y. Kim, S.M. Yoon, W. Bae, K.S. Kang, Y.W. Rhee, Treatment characteristic of 1, 4-dioxane by ozone-based advanced oxidation processes, Journal of Industrial and Engineering Chemistry, 18 (2012) 1951-1955.
[30] Z. Li, S. Yuan, C. Qiu, Y. Wang, X. Pan, J. Wang, C. Wang, J. Zuo, Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment, Electrochimica Acta, 102 (2013) 174-182.
[31] S. Sabhi, J. Kiwi, Degradation of 2, 4-dichlorophenol by immobilized iron catalysts, Water Research, 35 (2001) 1994-2002.
[32] D. Tabet, M. Saidi, M. Houari, P. Pichat, H. Khalaf, Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation, Journal of environmental management, 80 (2006) 342-346.
[33] H.-J. Jung, J.-S. Hong, J.-K. Suh, A comparison of fenton oxidation and photocatalyst reaction efficiency for humic acid degradation, Journal of Industrial and Engineering Chemistry, 19 (2013) 1325-1330.
[34] S. Şahinkaya, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process, Journal of Industrial and Engineering Chemistry, 19 (2013) 601-605.
[35] G. Muthuraman, I.-S. Moon, A review on an electrochemically assisted-scrubbing process for environmental harmful pollutant›s destruction, Journal of Industrial and Engineering Chemistry, 18 (2012) 1540-1550.
[36] S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis, The journal of physical chemistry letters, 5 (2014) 2543-2554.
[37] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O. shea, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, 125 (2012) 331-349.
[38] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chemical reviews, 114 (2014) 9919-9986.
[39] S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis, Applied Catalysis B: Environmental, 176 (2015) 396-428.
[40] A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, nature, 238 (1972) 37- 38.
[41] P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells, Chemical reviews, 110 (2010) 6664-6688.
[42] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible‐Light Active Anatase Photocatalyst, Advanced Functional Materials, 21 (2011) 3744-3752.
[43] D.A. Keane, K.G. McGuigan, P.F. Ibáñez, M.I. Polo-López, J.A. Byrne, P.S. Dunlop, K. O›Shea, D.D. Dionysiou, S.C. Pillai, Solar photocatalysis for water disinfection: materials and reactor design, Catalysis Science & Technology, 4 (2014) 1211-1226.
[44] S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden, J. Colreavy, D. Corr, S.J. Hinder, Synthesis of high-temperature stable anatase TiO2 photocatalyst, The Journal of Physical Chemistry C, 111 (2007) 1605-1611.
[45] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly Visible Light Active TiO2 − x N x Heterojunction Photocatalysts†, Chemistry of Materials, 22 (2010) 3843-3853.
[46] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Advanced Materials, 15 (2003) 464-466.
[47] V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS applied materials & interfaces, 4 (2012) 2717-2725.
[48] G.-S. Li, D.-Q. Zhang, J.C. Yu, A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2, Environmental science & technology, 43 (2009) 7079-7085.
[49] A. Kudo, M. Sekizawa, Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst, Chemical Communications, (2000) 1371- 1372.
[50] F. Kong, L. Huang, L. Luo, S. Chu, Y. Wang, Z. Zou, Synthesis and characterization of visible light driven mesoporous nano-photocatalyst MoO3 /TiO2 , Journal of nanoscience and nanotechnology, 12 (2012) 1931-1937.
[51] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Nanostructured Ti1-x S x O2-y N y Heterojunctions for Efficient Visible-Light-Induced Photocatalysis, Inorganic chemistry, 51 (2012) 7164-7173.
[52] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical reviews, 95 (1995) 69- 96.
[53] V. Etacheri, G. Michlits, M.K. Seery, S.J. Hinder, S.C. Pillai, A Highly Efficient TiO2 –x C x Nano-heterojunction Photocatalyst for Visible Light Induced Antibacterial Applications, ACS applied materials & interfaces, 5 (2013) 1663-1672.
[54] N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4 /CeO2 nanocomposites with high visible-light-induced photocatalytic activity, ACS applied materials & interfaces, 4 (2012) 3718-3723.
[55] S. Polisetti, P.A. Deshpande, G. Madras, Photocatalytic activity of combustion synthesized ZrO2 and ZrO2 –TiO2 mixed oxides, Industrial & Engineering Chemistry Research, 50 (2011) 12915-12924.
[56] L. Li, M. Krissanasaeranee, S.W. Pattinson, M.Stefik, U. Wiesner, U. Steiner, D. Eder, Enhanced photocatalytic properties in well-ordered mesoporous WO3 , Chemical Communications, 46 (2010) 7620- 7622.
[57] Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang, X.W.D. Lou, A magnetically separable photocatalyst based on nest-like γ-Fe2 O3 /ZnO double-shelled hollow structures with enhanced photocatalytic activity, Nanoscale, 4 (2012) 183-187.
[58] D. Chu, J. Mo, Q. Peng, Y. Zhang, Y. Wei, Z. Zhuang, Y. Li, Enhanced Photocatalytic Properties of SnO2 Nanocrystals with Decreased Size for ppb‐level Acetaldehyde Decomposition, ChemCatChem, 3 (2011) 371-377.
[59] M. Grätzel, Heterogeneous photochemical electron transfer, CRC Press Boca Raton, FL, 1989.
[60] S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of hazardous materials, 112 (2004) 269-278.
[61] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, The journal of physical chemistry, 81 (1977) 1484-1488.
[62] Y. Wang, Y. Huang, W. Ho, L. Zhang, Z. Zou, S. Lee, Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation, Journal of Hazardous materials, 169 (2009) 77-87.
[63] C. Su, C.-M. Tseng, L.-F. Chen, B.-H. You, B.-C. Hsu, S.-S. Chen, Sol–hydrothermal preparation and photocatalysis of titanium dioxide, Thin Solid Films, 498 (2006) 259-265.
[64] R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Electronic and optical properties of anatase TiO2 , Physical Review B, 61 (2000) 7459.
[65] M. Muruganandham, M. Swaminathan, Solar photocatalytic degradation of a reactive azo dye in TiO2 -suspension, Solar Energy Materials and Solar Cells, 81 (2004) 439-457.
[66] T. Miyagi, M. Kamei, T. Mitsuhashi, T. Ishigaki, A. Yamazaki, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity, Chemical Physics Letters, 390 (2004) 399-402.
[67] M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water, Applied Catalysis B: Environmental, 49 (2004) 227- 232.
[68] E. Beyers, P. Cool, E.F. Vansant, Anatase formation during the synthesis of mesoporous titania and its photocatalytic effect, The Journal of Physical Chemistry B, 109 (2005) 10081-10086.
[69] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189-218.
[70] P. Schmitt-Kopplin, N. Hertkorn, H.-R. Schulten, A. Kettrup, Structural changes in a dissolved soil humic acid during photochemical degradation processes under O2 and N2 atmosphere, Environmental science & technology, 32 (1998) 2531-2541.
[71] A. Paleologou, H. Marakas, N.P. Xekoukoulotakis, A. Moya, Y. Vergara, N. Kalogerakis, P. Gikas, D. Mantzavinos, Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation, Catalysis Today, 129 (2007) 136-142.
[72] K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry, 156 (2003) 227-233.
[73] N. Daneshvar, A. Niaei, S. Akbari, S. Aber, N. Kazemian, Photocatalytic disinfection of water polluted by Pseudomonas aeruginosa, Global Nest J, 9 (2007) 1-5.
[74] P.V. Kamat, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, The Journal of Physical Chemistry Letters, 1 (2009) 520-527.
[75] D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, Photocatalytic degradation for environmental applications–a review, Journal of Chemical Technology and Biotechnology, 77 (2002) 102-116.
[76] K. Pirkanniemi, M. Sillanpää, Heterogeneous water phase catalysis as an environmental application: a review, Chemosphere, 48 (2002) 1047-1060.
[77] A. Huang, L. Cao, J. Chen, F.-J. Spiess, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, Photocatalytic degradation of triethylamine on titanium oxide thin films, Journal of catalysis, 188 (1999) 40-47.
[78] I. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou, M. Bernard, P. Falaras, Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3, 5-dichlorophenol degradation, Journal of Photochemistry and Photobiology A: Chemistry, 149 (2002) 237-245.
[79] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2 : correlation between photoreactivity and charge carrier recombination dynamics, The Journal of Physical Chemistry, 98 (1994) 13669-13679.
[80] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev, 107 (2007) 2891-2959.
[81] A. Sclafani, J. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, The Journal of Physical Chemistry, 100 (1996) 13655-13661.
[82] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Solar Energy Materials and Solar Cells, 90 (2006) 1773-1787.
[83] N. Serpone, Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 104 (1997) 1-12.
[84] J.C. Yu, L. Zhang, J. Yu, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework, Chemistry of Materials, 14 (2002) 4647-4653.
[85] Y. Do, W. Lee, K. Dwight, A. Wold, The effect of WO3 on the photocatalytic activity of TiO2 , Journal of Solid State Chemistry, 108 (1994) 198-201.
[86] J. Engweiler, J. Harf, A. Baiker, WOx /TiO2 catalysts prepared by grafting of tungsten alkoxides: morphological properties and catalytic behavior in the selective reduction of NO by NH3 , Journal of Catalysis, 159 (1996) 259-269.
[87] K. Vinodgopal, P.V. Kamat, Enhanced rates of photocatalytic degradation of an azo dye using SnO2 / TiO2 coupled semiconductor thin films, Environmental science & technology, 29 (1995) 841-845.
[88] A. Maira, K.L. Yeung, C. Lee, P.L. Yue, C.K. Chan, Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts, Journal of Catalysis, 192 (2000) 185-196.
[89] Y. Li, D.-S. Hwang, N.H. Lee, S.-J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chemical Physics Letters, 404 (2005) 25-29.
[90] R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, The Journal of Physical Chemistry C, 112 (2008) 13563-13570.
[91] G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin, J.-M. Laıné, Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water, Applied Catalysis B: Environmental, 47 (2004) 73-84.
[92] P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy, S.J. Hinder, Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2, The Journal of Physical Chemistry C, 112 (2008) 7644-7652.
[93] J.A. Gamboa, D.M. Pasquevich, Effect of Chlorine Atmosphere on the Anatase‐Rutile Transformation, Journal of the American Ceramic Society, 75 (1992) 2934-2938.
[94] A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chemical Reviews, 95 (1995) 49-68.
[95] N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode, The Journal of Physical Chemistry B, 101 (1997) 9342-9351.
[96] A. Kay, R. Humphry-Baker, M. Graetzel, Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives, The Journal of Physical Chemistry, 98 (1994) 952-959.
[97] B. Patrick, P. Kamat, Photosensitization of large-bandgap semiconductors. Charge injection from triplet excited thionine into ZnO colloids, Journal of Physical Chemistry, 96 (1992).
[98] P.V. Kamat, Picosecond charge-transfer events in the photosensitization of colloidal titania, Langmuir, 6 (1990) 512-513.
[99] P.V. Kamat, K. Gopidas, D. Weir, Photoelectrochemistry in particulate systems. Photosensitized charge injection into opaque TiO2 semiconductor powder as probed by time-resolved diffuse reflectance laser flash photolysis, Chemical physics letters, 149 (1988) 491-496.
[100] K. Kalyanasundaram, N. Vlachopoulos, V. Krishnan, A. Monnier, M. Grätzel, Sensitization of titanium dioxide in the visible light region using zinc porphyrins, Journal of Physical Chemistry, 91 (1987) 2342-2347.
[101] R. Eichberger, F. Willig, Ultrafast electron injection from excited dye molecules into semiconductor electrodes, Chemical physics, 141 (1990) 159-173.
[102] Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 , Environmental science & technology, 35 (2001) 966-970.
[103] S. Malato, P. Fernández-Ibáñez, M. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catalysis Today, 147 (2009) 1-59.
[104] X. Zhang, T. Peng, S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production, Journal of Materials Chemistry A, 4 (2016) 2365-2402.
[105] R. Argazzi, N.Y.M. Iha, H. Zabri, F. Odobel, C.A. Bignozzi, Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors, Coordination Chemistry Reviews, 248 (2004) 1299-1316.
[106] A.S. Polo, M.K. Itokazu, N.Y.M. Iha, Metal complex sensitizers in dye-sensitized solar cells, Coordination Chemistry Reviews, 248 (2004) 1343-1361.
[107] I. Martini, J.H. Hodak, G.V. Hartland, Effect of water on the electron transfer dynamics of 9-anthracenecarboxylic acid bound to TiO2 nanoparticles: demonstration of the Marcus inverted region, The Journal of Physical Chemistry B, 102 (1998) 607- 614.
[108] J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Grätzel, Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2 ) interface, The Journal of Physical Chemistry, 100 (1996) 9577-9578.
[109] A.K. Jana, Solar cells based on dyes, Journal of Photochemistry and Photobiology A: Chemistry, 132 (2000) 1-17.
[110] G. Liu, J. Zhao, Photocatalytic degradation of dye sulforhodamine B: a comparative study of photocatalysis with photosensitization, New Journal of Chemistry, 24 (2000) 411-417.
[111] F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2 -assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Applied Catalysis B: Environmental, 15 (1998) 147-156.
[112] F. Zhang, J. Zhao, L. Zang, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light, Journal of Molecular Catalysis A: Chemical, 120 (1997) 173-178.
[113] J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka, N. Serpone, Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles, Environmental science & technology, 32 (1998) 2394-2400.
[114] M. Ni, M.K. Leung, D.Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, 11 (2007) 401-425.
[115] K. Gupta, R. Singh, A. Pandey, A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli, Beilstein journal of nanotechnology, 4 (2013) 345-351.
[116] V.N. Nguyen, N.K.T. Nguyen, P.H. Nguyen, Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (2011) 035014.
[117] E. Kowalska, S. Rau, Photoreactors for wastewater treatment: a review, Recent Patents on Engineering, 4 (2010) 242-266.
[118] M.V. Dozzi, A. Saccomanni, E. Selli, Cr (VI) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2 , Journal of hazardous materials, 211 (2012) 188-195.
[119] J.-W. Yoon, T. Sasaki, N. Koshizaki, Dispersion of nanosized noble metals in TiO2 matrix and their photoelectrode properties, Thin Solid Films, 483 (2005) 276-282.
[120] M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 189 (2007) 258-263.
[121] S. Tomás, A. Luna-Resendis, L. Cortés-Cuautli, D. Jacinto, Optical and morphological characterization of photocatalytic TiO2 thin films doped with silver, Thin Solid Films, 518 (2009) 1337-1340.
[122] N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes, Journal of Molecular Catalysis A: Chemical, 258 (2006) 124-132.
[123] B. Xin, Z. Ren, H. Hu, X. Zhang, C. Dong, K. Shi, L. Jing, H. Fu, Photocatalytic activity and interfacial carrier transfer of Ag–TiO2 nanoparticle films, Applied Surface Science, 252 (2005) 2050-2055.
[124] A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells, Chemical reviews, 110 (2010) 6873-6890.
[125] B. Yu, Z. Hu, M. Liu, H. Yang, Q. Kong, Y. Liu, Review of research on air-conditioning systems and indoor air quality control for human health, International journal of refrigeration, 32 (2009) 3-20.
[126] S. Kment, H. Kmentova, P. Kluson, J. Krysa, Z. Hubicka, V. Cirkva, I. Gregora, O. Solcova, L. Jastrabik, Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films, Journal of colloid and interface science, 348 (2010) 198-205.
[127] D. Robert, Photosensitization of TiO2 by Mx Oy and Mx Sy nanoparticles for heterogeneous photocatalysis applications, Catalysis Today, 122 (2007) 20-26.
[128] H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications, Journal of Materials Chemistry, 19 (2009) 5089-5121.
[129] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water research, 88 (2016) 428-448.
[130] M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Development of alternativephotocatalysts to TiO2 : challenges and opportunities, Energy & Environmental Science, 2 (2009) 1231- 1257.
[131] M. Ilieva, A. Nakova, V. Tsakova, TiO2 /WO3 hybrid structures produced through a sacrificial polymer layer technique for pollutant photo-and photoelectrooxidation under ultraviolet and visible light illumination, Journal of Applied Electrochemistry, 42 (2012) 121-129.
[132] Y. Bessekhouad, D. Robert, J. Weber, Bi2 S3 /TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004) 569-580.
[133] G. Ren, Y. Gao, J. Yin, A. Xing, H. Liu, Synthesis of High Activity TiO2 /WO3 Photocatalyst via Environmentally Friendly and Microwave Assisted Hydrothermal Process, Journal of Chemical Society Pakistan, 33 (2011) 666-670.
[134] S. Kuang, L. Yang, S. Luo, Q. Cai, Fabrication, characterization and photoelectrochemical properties of Fe2 O3 modified TiO2 nanotube arrays, Applied Surface Science, 255 (2009) 7385-7388.
[135] A.H. Zyoud, N. Zaatar, I. Saadeddin, C. Ali, D. Park, G. Campet, H.S. Hilal, CdS-sensitized TiO2 in phenazopyridine photo-degradation: Catalyst efficiency, stability and feasibility assessment, Journal of Hazardous Materials, 173 (2010) 318-325.
[136] M. Ge, C. Guo, X. Zhu, L. Ma, Z. Han, W. Hu, Y. Wang, Photocatalytic degradation of methyl orange using ZnO/TiO2 composites, Frontiers of Environmental Science & Engineering in China, 3 (2009) 271-280.
[137] S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: a review, Journal of Membrane Science, 472 (2014) 167-184.
[138] S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Separation and Purification Technology, 73 (2010) 71-91.
[139] G.L. Puma, P.L. Yue, Modelling and design of thin-film slurry photocatalytic reactors for water purification, Chemical engineering science, 58 (2003) 2269-2281.
[140] R. van Grieken, J. Marugán, C. Sordo, C. Pablos, Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors, Catalysis Today, 144 (2009) 48-54.
[141] M. Vezzoli, T. Farrell, A. Baker, S. Psaltis, W.N. Martens, J.M. Bell, Optimal catalyst thickness in titanium dioxide fixed film reactors: Mathematical modelling and experimental validation, Chemical engineering journal, 234 (2013) 57-65.
[142] R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catalysis Today, (2016).
[143] S. Mozia, D. Darowna, K. Szymański, S. Grondzewska, K. Borchert, R. Wróbel, A.W. Morawski, Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents, Catalysis Today, 236 (2014) 135-145.
[144] W. Zhang, L. Ding, J. Luo, M.Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review, Chemical Engineering Journal, 302 (2016) 446-458.
[145] J. Marugán, R. van Grieken, C. Pablos, M.L. Satuf, A.E. Cassano, O.M. Alfano, Photocatalytic inactivation of Escherichia coli aqueous suspensions in a fixed-bed reactor, Catalysis Today, 252 (2015) 143-149.
[146] Y.-S. Na, D.-H. Kim, C.-H. Lee, S.-W. Lee, Y.-S. Park, Y.-K. Oh, S.-H. Park, S.-K. Song, Photocatalytic decolorization of rhodamine B by fluidized bed reactor with hollow ceramic ball photocatalyst, Korean Journal of Chemical Engineering, 21 (2004) 430-435.
[147] R.-C. Wang, K.-S. Fan, J.-S. Chang, Removal of acid dye by ZnFe2 O4 /TiO2 -immobilized granular activated carbon under visible light irradiation in a recycle liquid–solid fluidized bed, Journal of the Taiwan Institute of Chemical Engineers, 40 (2009) 533-540.
[148] M. Zulfakar, A.H. Hairul Nazirah, A. Hadi, A. Rahman, Photocatalytic degradation of phenol in a fluidized bed reactor utilizing immobilized TiO2 photocatalyst: Characterization and process studies, (2011).