[1] Duan, H., You, R., Xu, S., Li, Z., Qian, K., Cao, T., Huang, W., & Bao, X. (2019). Pentacoordinated Al
3+-Stabilized Active Pd Structures on Al
2O
3-Coated Palladium Catalysts for Methane Combustion.
Angewandte Chemie (International ed. in English), 58(35), 12043-12048.
https://doi.org/10.1002/anie.201904883
[2] Lin, H., Liu, Y., Deng, J., Jing, L., & Dai, H. (2023). Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts.
Catalysts, 13(2), 427.
https://doi.org/10.3390/catal13020427
[3] Cao, Y., Liu, F., Song, C., Yang, L., & Zhai, C. (2024). A Novel Fe
2O
3/Al
2O
3 Porous Media Catalyst Prepared by Ultrasonic-Assisted Impregnation for Low-Concentration Methane Catalytic Combustion.
Chemical Engineering Journal, 480, 148285.
https://doi.org/10.1016/j.cej.2023.148285
[4] Ding, Y., Wu, Q., Lin, B., Guo, Y., Guo, Y., Wang, Y., Wang, L., & Zhan, W. (2020). Superior Catalytic Activity of A Pd Catalyst in Methane Combustion by Fine-Tuning The Phase of Ceria-Zirconia Support.
Applied Catalysis B: Environmental, 266, 118631.
https://doi.org/10.1016/j.apcatb.2020.118631
[5] Gélin, P., & Primet, M. (2002). Complete Oxidation of Methane at Low Temperature over Noble Metal Based Catalysts: A Review.
Applied Catalysis B: Environment and Energy, 39(1), 1-37.
https://doi.org/10.1016/s0926-3373(02)00076-0
[7] Liu, W., Guo, D., & Xu, X. (2012). Research Progress of Palladium Catalysts for Methane Combustion.
China Petroleum Processing and Petrochemical Technology, 14(3), 1-9.
https://doi.org/10.1002/chin.201402253
[8] Hurtado, P., Ordonez, S., Sastre, H., & Diez, F. V. (2004). Development of A Kinetic Model for the Oxidation of Methane over Pd/Al
2O
3 at Dry and Wet Conditions.
Applied Catalysis B: Environmental, 51(4), 229-238.
https://doi.org/10.1016/j.apcatb.2004.03.006
[9] Nilsson, J., Carlsson, P., Carlsson, P., Martin, N. M., Martin, N., Velin, P., Velin, P., Meira, D. M., Meira, D. M., Grönbeck, H., Grönbeck, H., & Skoglundh, M. (2018). Oxygen Step-Response Experiments for Methane Oxidation over Pd/Al
2O
3: An In-Situ XAFS Study.
Catalysis Communications, 109, 24-27.
https://doi.org/10.1016/j.catcom.2018.02.011
[10] Chen, X., Zheng, Y., Huang, F., Xiao, Y., Cai, G., Zhang, Y., Zheng, Y., & Jiang, L. (2018). Catalytic Activity and Stability over Nanorod-Like Ordered Mesoporous Phosphorus-Doped Alumina Supported Palladium Catalysts for Methane Combustion.
ACS Catalysis, 8(12), 11016-11028.
https://doi.org/10.1021/acscatal.8b02420
[11] Hou, Z., Liu, Y., Deng, J., Lu, Y., Xie, S., Fang, X., & Dai, H. (2018). Highly Active and Stable Pd-GaO
x/Al
2O
3 Catalysts Derived from Intermetallic Pd
5Ga
3 Nanocrystals for Methane Combustion.
ChemCatChem, 10(24), 5637-5648.
https://doi.org/10.1002/cctc.201801684
[12] Shi, W., Xu, G., Han, X., Wang, Y., Liu, Z., Xue, S., Sun, N., Shi, X., Yu, Y., & He, H. (2023). Nano-Sized Alumina Supported Palladium Catalysts for Methane Combustion with Excellent Thermal Stability.
Journal of Environmental Sciences (China), 126, 333-347.
https://doi.org/10.1016/j.jes.2022.04.030
[14] Burch, R., & Loader, P.K. (1994). Investigation of Pt/Al
2O
3 and Pd/Al
2O
3 Catalysts for The Combustion of Methane at Low Concentrations.
Applied Catalysis B: Environmental, 5(1-2), 149-164.
https://doi.org/10.1016/0926-3373(94)00037-9
[15] Lyubovsky, M., Smith, L. L., Castaldi, M., Karim, H., Nentwick, B., Etemad, S., LaPierre, R., & Pfefferle, W. C. (2003). Catalytic Combustion over Platinum Group Catalysts: Fuel-Lean Versus Fuel-Rich Operation.
Catalysis Today, 83(1-4), 71-84.
https://doi.org/10.1016/S0920-5861(03)00217-7
[16] Yang, Y., Wang, G., Fang, D., Han, J., Dang, F., & Yang, M. (2020). Study of The Use of A Pd–Pt-Based Catalyst for The Catalytic Combustion of Storage Tank VOCs.
International Journal of Hydrogen Energy, 45(43), 22732-22743.
https://doi.org/10.1016/j.ijhydene.2020.06.088
[17] Wu, Z., Deng, J., Liu, Y., Xie, S., Jiang, Y., Zhao, X., Yang, J., Arandiyan, H., Guo, G., & Dai, H. (2015). Three-Dimensionally Ordered Mesoporous Co
3O
4-Supported Au–Pd Alloy Nanoparticles: High-Performance Catalysts for Methane Combustion.
Journal of Catalysis, 332, 13-24.
https://doi.org/10.1016/j.jcat.2015.09.008
[18] Wang, Z., Deng, J., Liu, Y., Yang, H., Xie, S., Wu, Z., & Dai, H. (2017). Three-Dimensionally Ordered Macroporous CoCr
2O
4-Supported Au–Pd Alloy Nanoparticles: Highly Active Catalysts for Methane Combustion.
Catalysis Today, 281, 467-476.
https://doi.org/10.1016/j.cattod.2016.05.035
[19] Goodman, E., Dai, S., Yang, A., Wrasman, C., Gallo, A., Bare, S., Hoffman, A., Jaramillo, T., Graham, G., & Pan, X., & Cargnello, M. (2017). Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability.
ACS Catalysis, 7, 4372-4380.
https://doi.org/10.1021/acscatal.7b00393
[20] Qi, W., Ran, J., Zhang, Z., Niu, J., Zhang, P., Fu, L., Hu, B., & Li, Q. (2018). Methane Combustion Reactivity During the Metal→Metallic Oxide Transformation of Pd-Pt Catalysts: Effect of Oxygen Pressure.
Applied Surface Science, 435, 776-785.
https://doi.org/10.1016/j.apsusc.2017.11.178
[21] Chen, J., Zhong, J., Wu, Y., Hu, W., Qu, P., Xiao, X., Zhang, G., Liu, X., Jiao, Y., Zhong, L., & Chen, Y. (2020). Particle Size Effects in Stoichiometric Methane Combustion: Structure-Activity Relationship of Pd Catalyst Supported on Gamma-Alumina.
ACS Catalysis, 10(18), 10339-10349.
https://doi.org/10.1021/acscatal.0c03111
[22] Trimm, D. L., & Lam, C.-W. (1980). The Combustion of Methane on Platinum-Alumina Fibre Catalysts-I: Kinetics and Mechanism.
Chemical Engineering Science, 35(6), 1405-1413.
https://doi.org/10.1016/0009-2509(80)85134-7
[23] Seo, Y., Cho, S., Song, K. S., & Kang, S. K. (2002). A Fibre‐Mat Catalytic Burner for The Heating System of PVC Tiles.
International Journal of Energy Research, 26, 921-934.
https://doi.org/10.1002/er.828
[24] Xiong, H., Wiebenga, M. H., Carrillo, C., Gaudet, J. R., Pham, H. N., Kunwar, D., Oh, S. H., Qi, G., Kim, C. H., & Datye, A. K. (2018). Design Considerations for Low-Temperature Hydrocarbon Oxidation Reactions on Pd Based Catalysts.
Applied Catalysis B: Environmental, 236, 436-444.
https://doi.org/10.1016/j.apcatb.2018.05.049
[25] Mussio, A., Danielis, M., Divins, N. J., Llorca, J., Colussi, S., & Trovarelli, A. (2021). Structural Evolution of Bimetallic PtPd/CeO
2 Methane Oxidation Catalysts Prepared by Dry Milling.
ACS Applied Materials & Interfaces, 13(27), 31614-31623.
https://doi.org/10.1021/acsami.1c05050
[26] Saraev, A. A., Yashnik, S. A., Gerasimov, E. Y.,Kremneva, A. M., Vinokurov, Z. S., & Kaichev, V. V. (2021). Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study.
Catalysts, 11(12), 1446.
https://doi.org/10.3390/catal11121446
[27] Qin, M., Chew, B. T., Yau, Y. H., Wang, X., Wang, C., Luo, X., Li, L., &Pan, S. (2023). Emergency Heater Based on Gas-Fired Catalytic Combustion Infrared Technology: Structure, Evaluation and Thermal Response.
Energy, 274, 127426.
https://doi.org/10.1016/j.energy.2023.127426