On the positron annihilation spectroscopy and tensile behavior of COOH-MWCNT/epoxy nanocomposites

Document Type : Research Article

Authors

1 Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

Positron Annihilation Lifetime Spectroscopy (PALS) is sensitive to the material voids/free volume on the atomic scale. For this reason, this method has been used as a unique technology to measure the free volume and structural defects in polymers in recent years. In the present study,  epoxy-matrix nanocomposites with different carboxylic acid functionalized multiwalled carbon nanotubes (COOH-MWCNTs) loadings (0.1-0.7 wt% at a step of 0.2) were fabricated, and the influence of COOH-MWCNTs loading on the prepared nanocomposites' free volume properties and tensile behavior were explored. The measurement of positron annihilation lifetime was done using a conventional synchronization system based on a 22Na radioactive source with 7 μCi activity. The detectors used in this work were fast plastic scintillators (type: NT-850) with ns time response. The results demonstrated that the tensile strength of the nanocomposites decreased with the increase in the lifetime of the ortho-positronium annihilation (increase in the radius and free volume) in the samples. The 0.3 wt% COOH-MWCNTs/epoxy nanocomposite showed the maximum tensile strength. Overall, the results of this work clearly revealed that there was a strong relationship between the tensile strength and free volume in the polymer nanocomposites.

Graphical Abstract

On the positron annihilation spectroscopy and tensile behavior of COOH-MWCNT/epoxy nanocomposites

Highlights

  • COOH - MWCNTs / epoxy nano-composites with various filler loadings were fabricated.
  • The positron annihilation spectroscopy and tensile behavior of the nanocomposites were investigated.
  •  Adding up to 0.5 wt% MWCNTs decreases the free volume size.
  • The samples’ tensile strength decreases as the free volume size increases.
  • The maximum tensile strength was related to the sample containing 0.3 wt% MWCNTs.

Keywords

Main Subjects


Copyright © 2024 The Author(s). Published by IROST.

[1] Bobbili, R., & Madhu, V. (2016). Sliding Wear Behavior of  E-Glass-Epoxy/MWCNT Composites: An Experimental Assessment. Engineering Science and Technology, an International Journal, 19(1), 8-14.
https://doi.org/10.1016/j.jestch.2015.07.008
[2] King, J. A., Klimek, D. R., Miskioglu, I. & Odegard, G. M. (2013). Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites. Journal of Applied Polymer Science, 128(6), 4217-4223. https://doi.org/10.1002/app.38645
[3] Karbhari, V. M., & Xian, G. (2022). Thermomechanical Characterization of Organo-Clay Epoxy Nanocomposites for Use in Civil Infrastructure. Polymer Plastics Technology and Materials, 61(2), 220-229.
https://doi.org/10.1080/25740881.2021.1976205
[4] Hashemi, Z., & Khosravi, H. (2021). Effects of Functionalized Fumed-Silica on the Three-Point Bending and Sliding Wear Properties of Woven Basalt Fabric-Epoxy Composites. Journal of Textile Institute, 112(9), 1491-1499. 
https://doi.org/10.1080/00405000.2020.1827581
[5] Ponnuruthiyil Shaji, A., Shaik, M. A., & Golla, B. R. (2019). Mechanical, Wear, and Dielectric Behavior of TiO2 Reinforced High-Density Polyethylene Composites. Journal of Applied Polymer Science, 136(23), 47610.
https://doi.org/10.1002/app.47610
[6] Abdi, A., Eslami-Farsani, R., & Khosravi, H. (2018). Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-Modified CaCO3 Nanoparticles. Fibers and Polymers, 19(3), 635-640.
https://doi.org/10.1007/s12221-018-7755-x
[7] Rahmani, H., Eslami-Farsani, R., & Ebrahimnezhad-Khaljiri, H. (2020). High Velocity Impact Response of Aluminum - Carbon Fibers-Epoxy Laminated Composites Toughened by Nano Silica and Zirconia. Fibers and Polymers, 21(1), 170-178.
https://doi.org/10.1007/s12221-020-9594-4
[8] Bigdilou, M., Eslami-Farsani, R., Ebrahimnezhad-Khaljiri, H. & Mohammadi, M. A. (2022). Experimental Assessment of Adding Carbon Nanotubes on the Impact Properties of Kevlar-Ultrahigh Molecular Weight Polyethylene Fibers Hybrid Composites. Journal of Industrial Textiles, 51, 3767S-3785S. https://doi.org/10.1177/1528083720921483
[9] Kim, M., Okoli, O. I., Jack, D., Park, Y. B., & Liang, Z. Y. (2011). Characterization and Modelling of CNT–Epoxy and CNT–Fibre–Epoxy Composites. Plastics, Rubber and Composites, 40(10), 481-490.
https://doi.org/10.1179/1743289811Y.0000000003
[10] Chakraborty, A. K., Plyhm, T., Barbezat, M. Necola, A., & Terrasi, G. P. (2011). Carbon Nanotube (CNT)-Epoxy Nanocomposites: A Systematic Investigation of CNT Dispersion. Journal of Nanoparticle Research, 13, 6493-6506. https://doi.org/10.1007/s11051-011-0552-3
[11] Rathinavel, S., Priyadharshini, K., & Panda, D. (2021). A Review on Carbon Nanotube: An Overviewof Synthesis, Properties, Functionalization, Characterization, and the Application. Materials Science and Engineering: B, 268, 115095. https://doi.org/10.1016/j.mseb.2021.115095
[12] El-meniawi, M. A. H., Mahmoud, K. R., & Megahed, M. (2016). Positron Annihilation Spectroscopy and Mechanical Properties Studies for Epoxy Matrices Reinforced with Different Nanoparticles. Journal of Polymer Research, 23, 181. 
https://doi.org/10.1007/s10965-016-1074-6
[13] Patil, P. N., Sudarshan, K., Sharma, S. K., Maheshwari, P., Rath, S. K., Patri, M., & Pujari, P. K. (2012). Investigation of Nanoscopic Free Volume and Interfacial Interaction in an Epoxy Resin/Modified Clay Nanocomposite using Positron Annihilation Spectroscopy. ChemPhysChem, 13(17), 3916-3922. https://doi.org/10.1002/cphc.201200593
[14] Fang, M., Bartholomew, N., & Fulvio, A. D. (2019). Positron Annihilation Lifetime Spectroscopy Using Fast Scintillators and Digital Electronics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 943, 162507. https://doi.org/10.1016/j.nima.2019.162507
[15] Sharma, S. K., & Pujari, P. K. (2017). Role of Free Volume Characteristics of Polymer Matrix in Bulk Physical Properties of Polymer Nanocomposites: A Review of Positron Annihilation Lifetime Studies. Progress in Polymer Science, 75, 31-47.
https://doi.org/10.1016/j.progpolymsci.2017.07.001
[16] Dehghani, E. S., Aghiano, S., Anwand, W., Consolati, G., Ferragut, R., & Panzarasa, G. (2018). Investigating the Structure of Crosslinked Polymer Brushes (Brush-Gels) by Means of Positron Annihilation Spectroscopy. European Polymer, 99, 415-421. https://doi.org/10.1016/j.eurpolymj.2017.12.042
[17] Biganeh, A., Kakuee, O., Rafi-Kheiri, H., Lamehi-Rachti, M., Sheikh, N., & Yahaghi, E. (2020). Positron Annihilation Lifetime and Doppler Broadening Spectroscopy of Polymers. Radiation Physics and Chemistry, 166, 108461.
https://doi.org/10.1016/j.radphyschem.2019.108461
[18] Goworek, T. (2002). Comments on the Relation: Positronium Lifetime-Free Volume Size Parameters of the Tao-Eldrup Model. Chemical Physics Letters, 366(1-2), 184-187. https://doi.org/10.1016/S0009-2614(02)01569-5
[19] Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R., Khosravi, H., & Shahrabi-Farahani, A. (2020). Improving the Flexural Properties of E-Glass Fibers/Epoxy Isogrid Stiffened Composites through Addition of 3-Glycidoxypropyltrimethoxysilane Functionalized Nanoclay. Silicon, 12, 2515-2523. https://doi.org/10.1007/s12633-019-00346-8 
[20] Vakhshouri, M., & Khosravi, H. (2020). Synthesis of Nickel Nanoparticles on Graphene Oxide as a Promising Reinforcement for Epoxy Composites. Polymer Composites, 41(7), 2643-2651. https://doi.org/10.1002/pc.25563
[21] Khosravi, H., & Eslami-Farsani, R. (2018). Reinforcing Effect of Surface - Modified Multiwalled Carbon Nanotubes on Flexural Response of E-Glass/Epoxy Isogrid Stiffened Composite Panels. Polymer Composites, 39(52), E677-E686. https://doi.org/10.1002/pc.24118