Effect of physical properties on the oscillation of an acoustically levitated droplet

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Arak University, 38156-8-8349, Arak, Iran

2 Senior member of IEEE, School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Australia

Abstract

Acoustic levitation is the only method capable of suspending samples with different material properties and geometries, even in the liquid phase. Despite its widespread applications, droplet levitation still has a problem controlling the droplet’s position due to initial oscillations before reaching stability. This research investigates the effects of droplet physical properties, such as viscosity, radius, and density, on droplet oscillation amplitude. For this purpose, numerical simulations that apply the effect of the mentioned properties with acceptable accuracy and precision results were conducted using COMSOL Multiphysics 6.1 commercial software. The unique feature of using a simulation is the ability to study the effect of each parameter independently from the rest of the properties, which is not directly possible in experimental tests. The results emphasize the direct influence of viscosity on droplet oscillation amplitude. They also demonstrated that elevated viscosity leads to a decrease in droplet oscillation amplitude. In addition, increasing the density because of the added weight decreases the droplet amplitude. The droplet radius effect is more complicated because it is associated with two opposite effects. Increased droplet radius has the same effect as viscosity because of weight addition. On the other hand, a larger droplet's radius enlarges the cross-section and leads to a weak increase in droplet amplitude.

Graphical Abstract

Effect of physical properties on the oscillation of an acoustically levitated droplet

Highlights

  • Simulate the ultrasonic levitation process of droplets using the COMSOL Multiphysics software.
  • Investigate how the physical properties of droplets, namely viscosity, density, and droplet radius, affect their fluctuation amplitudes.
  • Increased viscosity results in greater resistance to deformation for the droplet, thereby maintaining its stability during levitation and reducing oscillation amplitude.
  • A higher droplet density leads to increased droplet weight, amplifying the droplet's oscillation amplitude.
  • Increasing the radius of the droplet improves the force applied to the droplet with the help of a larger cross-sectional area.

Keywords

Main Subjects


Copyright © 2024 The Author(s). Published by IROST.

[1] Beaugnon, E., Bourgault, D., Braithwaite, D., de Rango, P.,  Perrier de la Bathie, R., Sulpice, A. & Tournier, R. (1993). Material Processing in High Static Magnetic Field. A Review of An Experimental Study on Levitation, Phase Separation, Convection and Texturation. Journal de Physique I, 3(2), 399-421. https://doi.org/10.1051/jp1:1993142
[2] Jayawant, B. V. (1988). Review lecture - Electromagnetic Suspension and Levitation Techniques. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 416(1851) 245-320. 
https://doi.org/10.1098/rspa.1988.0036
[3] Ashkin, A., & Dziedzic, J. (1975). Optical Levitation of Liquid Drops by Radiation Pressure. Science, 187(4181), 1073-1075. https://doi.org/10.1126/science.187.4181.1073
[4] Vandaele, V.,  Lambert, P., & Delchambre, A. (2005). Non-Contact Handling in Microassembly: Acoustical Levitation. Precision Engineering, 29(4), 491-505. https://doi.org/10.1016/j.precisioneng.2005.03.003
[5] Bücks, K., & Müller, H. (1933). Über Einige Beobachtungen An Schwingenden Piezoquarzen Und Ihrem Schallfeld.  Zeitschrift für Physik, 84, 75-86. https://doi.org/10.1007/BF01330275
[6] Ding, M., Koyama, D., & Nakamura, K. (2012). Noncontact Ultrasonic Transport of Liquid Using A Flexural Vibration Plate. Applied Physics Express, 5(9), 097301. https://doi.org/10.1143/APEX.5.097301
[7] Foresti, D., Nabavi, M., Klingauf, M., Ferrari, A., & Poulikakos, D. (2013). Acoustophoretic Contactless Transport and Handling of Matter in Air. Proceedings of the National Academy of Sciences. 110(31), 12549-12554. https://doi.org/10.1073/pnas.1301860110
[8] Shen, C., Xie, W., & Wei, B. (2010). Digital Image Processing of Sectorial Oscillations for Acoustically Levitated Drops and Surface Tension Measurement. Science China Physics, Mechanics and Astronomy, 53(12), 2260-2265. https://doi.org/10.1007/s11433-010-4125-8
[9] Geng, D., Yan, N., Xie, W., Lü, Y., & Wei, B. (2023). Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State. Advanced Materials, 35(50), 2206464. https://doi.org/10.1002/adma.202206464
[10] Cao, H. -L., Yin, D. -C., Guo, Y. -Z.,  Ma, X. -L., He, G., Guo, W. -H., Xie, X. -Z., & Zhou, B. -R. (2012). Rapid Crystallization from Acoustically Levitated Droplets. The Journal of the Acoustical Society of America, 131(4), 3164-3172. https://doi.org/10.1121/1.3688494
[11] Morgan,  B. A., Niinivaara, E., Xing, Z., Thompson, M. R., & Cranston, E. D. (2021). Validation of A Diffusion-Based Single Droplet Drying Model for Encapsulation of A Viral-Vectored Vaccine Using An Acoustic Levitator. International Journal of Pharmaceutics, 605, 120806. https://doi.org/10.1016/j.ijpharm.2021.120806
[12] Zeng, H., Wakata, Y., Chao, X., Li, M., & Sun, C. (2023). On Evaporation Dynamics of An Acoustically Levitated Multicomponent Droplet: Evaporation-Triggered Phase Transition and Freezing. Journal of Colloid and Interface Science, 648, 736-744. https://doi.org/10.48550/arXiv.2305.12381
[13] Yang, Z., Yang, G., He, Y., Shi, Z., & Dong, T. (2023) Evaporation Issues of Acoustically Levitated Fuel Droplets. Ultrasonics Sonochemistry, 98, 106480. https://doi.org/0.1016/j.ultsonch.2023.106480
[14] Lieber, C., Autenrieth, S., Schönewolf, K. -Y., Lebanoff,  A., Koch, R., Smith, S., Schlinger, P., & Bauer, H.-J. (2024). Application of Acoustic Levitation for Studying Convective Heat and Mass Transfer During Droplet Evaporation. International Journal of Multiphase Flow, 170, 104648. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104648
[15] Pang, B., Yang, G., Liu, X., Huang, Y., Li, W., He, Y., Shi, Z., Yang, Z., & Dong, T. (2024). Experimental Study of Evaporation Characteristics of Acoustically Levitated Fuel Droplets at High Temperatures. Energies, 17(1), 271. https://doi.org/10.3390/en17010271
[16] Xie, W., & Wei, B. (2001). Parametric Study of Single-Axis Acoustic Levitation. Applied Physics Letters, 79(6), 881-883. https://doi.org/10.1063/1.139139
[17] Baer, S., Andrade, M. A., Esen, C., Adamowski, J. C., Schweiger, G., & Ostendorf, A. (2011). Analysis of the Particle Stability in A New Designed Ultrasonic Levitation Device. Review of Scientific Instruments,  82(10), 105111. https://doi.org/10.1063/1.3652976
[18] Zang, D., Zhai, Z., Li, L., Lin, K., Li, X., & Geng, X. (2016). Vertical Vibration Dynamics of Acoustically Levitated Drop Containing Two Immiscible Liquids. Applied Physics Letters, 109(10),101602. https://doi.org/10.1063/1.4962462
[19] Andrade, M. A. B., Polychronopoulos, S., Memoli, G., & Marzo, A. (2019). Experimental Investigation of the Particle Oscillation Instability in A Single-Axis Acoustic Levitator. AIP Advances, 9(3), 035020. https://doi.org/10.1063/1.5078948
[20] Hasegawa, K., & Kono, K. (2019). Oscillation Characteristics of Levitated Sample in Resonant Acoustic Field. AIP Advances, 9(3), 035313. https://doi.org/10.1063/1.5092163
[21] Hasegawa, K., & Murata, M. (2022). Oscillation Dynamics of Multiple Water Droplets Levitated in An Acoustic Field. Micromachines. 13(9), 1373. https://doi.org/10.3390/mi13091373
[22] McElligott, A., Guerra, A., Wood, M. J., Rey, A. D., Kietzig, A. M., & Servio, P. (2022). Tinylev Acoustically Levitated Water: Direct Observation of Collective, Inter-Droplet Effects Through Morphological and Thermal Analysis of Multiple Droplets. Journal of Colloid and Interface Science, 619, 84-95. https://doi.org/10.1016/j.jcis.2022.03.082
[23] Chen, H., Li, A., Zhang, Y., Zhang, X., & Zang, D. (2022). Evaporation and Liquid-Phase Separation of Ethanol-Cyclohexane Binary Drops Under Acoustic Levitation. Physics of Fluids, 34(9), 092108. https://doi.org/10.1063/5.0109520
[25] Cancino-Jaque, E., Meneses-Diaz, J., Vargas-Hernández, Y., & Gaete-Garretón, L. (2023). On The Dynamics of A Big Drop in Acoustic Levitation. Ultrasonics Sonochemistry, 101, 106705. https://doi.org/10.1016/j.ultsonch.2023.106705
[26] Gor'kov, L. P. (1962). On The Forces Acting on A Small Particle in An Acoustical Field in An Ideal Fluid. Soviet Physics Doklady, 6, 773-775.
[27] Andrade, M. A., Pérez, N., & Adamowski, J. C. (2018). Review of Progress in Acoustic Levitation. Brazilian Journal of Physics, 48(2), 190-213. https://doi.org/10.1007/s13538-017-0552-6