[1] Bulatovic, S. M. (2015).
Handbook of Flotation Reagents: Chemistry, Theory and Practice, Vol. 3: Flotation of Industrial Minerals (pp. 1-222), Elsevier.
https://doi.org/10.1016/C2009-0-17332-4
[2] Essalhi, M., Mrani, D., Essalhi, A., Toummite, A., & Ali-Ammar, H. (2018). Evidence of A High Quality Barite in Drâa-Tafilalet Region, Morocco: A Nonupgraded Potential.
Journal of Materials and Environmental Sciences, 9(4), 1366-1378.
https://doi.org/10.26872/jmes.2017.9.4.149
[3] Ibrahim, D. S., Sami, N. A., & Balasubramanian, N. (2017). Effect of Barite and Gas Oil Drilling Fluid Additives on The Reservoir Rock Characteristics.
Journal of Petroleum Exploration and Production Technology, 7, 281-292.
https://doi.org/10.1007/s13202-016-0258-2
[4] Kecir, M., & Kecir, A. (2015). Selective Flotation of Barite and Associated Minerals: A Comparative Study.
Journal of the Polish Mineral Engineering Society, 2(2), 117-124.
https://doi.org/10.29227/IM-2015-02-20
[5] Bhatti, M. A., Kazmi, K. R., Mehmood R., Ahad, A., Tabbassum, A., & Akram, A. (2017). Beneficiation Study on Barite Ore of Duddar Area, District Lasbela, Balochistan Province, Pakistan.
Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences, 60(1), 9-22.
https://doi.org/10.52763/PJSIR.PHYS.SCI.60.1.2017.9.22
[6] Raju, G. B., Ratchambigai, S., Rao, M. A., Vasumathi, N., Vijaya Kumar, T. V., Prabhakar, S., & Rao, S. S. (2016). Beneficiation of Barite Dumpsby Flotation Column; Lab-Scale Studies to Commercial Production.
Transactions of the Indian Institute of Metals, 69(1), 75-81.
https://doi.org/10.1007/s12666-015-0700-z
[7] Labe, N. A., Ogunleye, P. O., Ibrahim, A. A., Fajulugbe, T., & Gbadema, S. T. (2018). Review of The Occurrence and Structural Controls of Barite Resources of Nigeria.
Journal of Degraded and Mining Lands Management 5(3), 1207-1216.
https://doi.org/10.15243/jdmlm.2018.053.1207
[9] Ba geri, B. S., Mahmoud, M., Abdulraheem, A., Al-Mutairi, S. H., Elkatatny, S. M., & Shawabkeh, R. A. (2016). Single Stage Filter Cake Removal of Barite Weighted Water Based Drilling Fluid.
Journal of Petroleum Science and Engineering, 149, 476-484.
https://doi.org/10.1016/j.petrol.2016.10.059
[11] Luz, A.B., Baltar, C. A. M. (2005). Usos E Especificacoes, Barita. In: da Luz, A. B., & Lins, F. F. (Eds.),
Rochas E Minerais Industriais, Usos E Especificacoes, Rio de Janeiro: Centro de Tecnologia Mineral-Ministerio da Ciencia E Tecnologia (CETEM/MCT), Parte II, Cap. 12, pp. 263-277. Retrieved from
https://mineralis.cetem.gov.br/handle/cetem/1048
[14] Akpan, A. E., Ebong, E. D., Ekwok, S. E., & Joseph, S. (2014). Geophysical and Geological Studies of the Spread and Industrial Quality of Okurike Barite Deposit.
American Journal of Environmental Science, 10(6), 566-574.
https://doi.org/10.3844/ajessp.2014.566.574
[17] Çifiҫi, M. S., & Kumuru, C. (1985). Eskisehir-Sivrihisar-Beylikahir-Küҫükhöyüklü Tepe Nadir Toprak Oksitli-Baritli flourit Cevherinin Zenginleştirilmesi, M.T.A. Maden Analizleri Ve Teknolojisi Daresi Başkanliği Cevher Zenginleştirme laboratuvar ve Pilot Tesisleri Yöneticiliği, Mayis, Lab. No. 5561, Proje no. 84-32a.
[18] Yüce, A. E., Doğan, M. Z., Önal, G., & Ipekoğlu, B. (1992). The Beneficiation of Fluorite and Barite from Beylikahir-Eskişehir Complex Ores. Aufbereitungs-Technik, 33(5), 274-281.
[20] Batouche, T., Bouzenzena, A., & Messai, A. (2018). Beneficiation Methods of Barite Ore in Algeria [Poster presentation]. 9ème congrès national de la Société Algérienne de Chimie USTHB, Algeria.
[22] Kolawole, F. O., Bergerman, M. G., Ulsen, C., & Kolawole, S. K. (2019). A Global Review of Barite Beneficiation Processes: A Case Study of Azara Barite Ores in Nigeria. Nigerian Journal of Engineering, 26(1), 65-76.
[23] Nzeh, N. S., & Popoola, A. P. I. (2023). Exploration and Characterization of Barite Mineral from Azara Nassarawa Ore Deposits for Suitability in Industrial Applications.
Physicochemical Problems of Mineral Processing, 59(2), 1-12.
https://doi.org/10.37190/ppmp/166104
[25] Shaikh, A. M. H., Banerjee, S. S., & Dixit, S. G. (1994). Use of Magnetic Surfactants in The High Gradient Magnetic Separation of Esentially Nonmagnetic Calcite and Barite.
Separations Technology 4(3), 174-179.
https://doi.org/10.1016/0956-9618(94)80020-0
[26] Jakabsky, S., Karoli, A., Hredzak, S., Lovas, M., & Znamenackova, I. (2010). Possibilities of Processing and Utilization of Tailings from the Settling Pit Nearby The Rudnany Village (Eastern Slovakia),
Mineralia Slovaca, 42(3), 305-308. Retrieved from
https://www.geology.sk/wp-content/uploads/2019/10/MS_3_10_06_Jakabsky_et_al.pdf
[28] Wyman, R. A. (1970). Experimental Work on Barite from Yarrow. Ontario. ANMET. Energy, Manes and Resources Canada, Division Report 70, 51 (IR).
[31] Ahmed, M. M. (2007). Effect of Comminution on Particle Shape and Surface Roughness and Their Relation to Flotation Process.
International Journal of Mineral Processing, 94(3-4), 180-191.
https://doi.org/10.1016/j.minpro.2010.02.007
[32] Rabatho, J. P., Tongamp, W., Shibayama, A.,Takasaki, Y., Nitta S., & Imai, T. (2011). Investigation of a Flotation Process with De-Sliming and Attrition to Upgrade and Recover Cu and Mo from a Cu-Mo Flotation Tailing.
Materials Transactions, 52(4) 746-752.
https://doi.org/10.2320/matertrans.M-M2011803
[35] Yu, Y., Ma, L., Cao, M., & Liu, Q. (2017). Slime Coatings in Froth Flotation: A Review. Minerals Engineering, 114, 26-36. https://doi.org/10.1016/j.mineng.2017.09.002
[37] Martinez, F., Hangensen, R. B., & Kudryk, V. (1975). Application of New Techniques in Developing a Barite Flotation Process. Transaction SME/AIME, 258(1), 27-30.
[38] Bolin, N. S. (1983). Production of Barite and Fluorspar from Milling Waste. Scandinavian Journal of Metallurgy, 12(3), 137-141.
[39] Houot, R., Save, M., Fromique, B., & Vigoureux, P. (1985). Industrial Sulphonates and Barite Flotation. Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 12(94), C195-C200.
[40] Marinakis, K. I., & Shergold, H. L. (1985). The Mechanism of Fatty Acid Adsorption in The Presence of Fluorite, Calcite and Barite.
International of Mineral Processing, 14(3), 161-176.
https://doi.org/10.1016/0301-7516(85)90001-8
[41] De Cuyper, J., & Broekaert, E. (1986). Flotation of a Complex Ore Containing Barite and Fluorspar, Using Alkyl-Sulfates and Sulfonates as Respective Collectors [Paper presentation]. 1st International Mineral Processing Symposium, İzmir, Turkey.
[42] Slaczke, A. S. (1987). Effects of an Ultrasonic Field on the Flotation Selectivity of Barite from a Barite-Fluorite-Quartz Ore.
International Journal of Mineral Processing, 20(3-4), 193-210.
https://doi.org/10.1016/0301-7516(87)90066-4
[43] Ciccu, R., Curreli, L., Giuliani, S., Manca, P. P., & Massacci, G. (1987).
Optimization of an Integrated Flowsheet for Barite Processing [Paper presentation]. Proceedings of the 20
th International Symposium on the Application of Computers and Mathematics in the Mineral Industries (APCOM 87). Johannesburg, South Africa. Retrieved from
https://www.saimm.co.za/Conferences/Apcom87Metallurgy/281-Ciccu
[44] Harris, M. J. (1988).
Barite Flotation. El Cuervo Butte, New Mexico Bureau of Mines and Mineral Resources.
Open File Report #336.
https://doi.org/10.58799/OFR-336
[45] Meker, B., Schulz, G., Cichos, Ch., & Richter, H. (1991). A Processing Technology for Heavily Weathered Rare Earth Ores of Dong Pao/Vietnam. XVII International mineral Processing Congress, Dresden, Germany.
[46] Sadowski, Z. (1992). The Influence of Sodium Lignin Sulfonate on the Adsorption of Sodium Dodecyl Sulfate on Salt-Type Mineral Surfaces.
Minerals Engineering, 5(3-5), 421-428.
https://doi.org/10.1016/0892-6875(92)90221-T
[47] Hernáinz, B., & Calero, H. M. (1993). Influence of Quebracho and Sodium Silicate on Flotation of Celestite and Calcite with Sodium Oleate.
International Journal of Mineral Processing, 37(3-4), 283-298.
https://doi.org/10.1016/0301-7516(93)90032-6
[48] Hadjiev, A., Hadjiev, P., & Georgiev, R. (2000). Flotation of Barite from Complex Iron Ore.
Processing of Fines (2), 222-230. Retrieved from
https://core.ac.uk/reader/297712288
[52] Gurpinar, G., Sonmez, E., & Bozkurt, V. (2004). Effect of Ultrasonic Treatment on Flotation of Calcite, Barite and Quartz.
Mineral Processing and Extractive Metallurgy, 113(2), 91-95.
https://doi.org/10.1179/037195504225005796
[53] Raju, G. B., Prabhakar, S., & Rao, S. S. (2005). Studies on the Beneficiation of Barite [Paper presentation]. International Seminar on Mineral Processing Technology (MPT-2004), Regional Research Laboratory (CSIR) Bhubaneswar, Orissa.
[54] Singh, R., Banerjee, B., Bhattacharyya, K. K., & Srivastava, J. P. (2007).
Up-Gradation of Barite Waste to Marketable Grade Concentrate [Paper presentation]. Proceedings of the XXIII International Mineral Processing Congress (IMPC), Chicago, IL, USA. Retrieved from
https://eprints.nmlindia.org/4162/1/Ratnakar_singh_-_XXIII.......congress.PDF
[55] Lu, S. S. (2010). Research on Basic Floatability of Barite and Effect of Fe3+ on Sodium Oleate Flotation System. 8th Annual meeting of China Nonferrous Metals Society, China.
[57] Zhao, Y., Liu, S., Li, X., Li, T., & Hou, K. (2014). Recovery of Low-Grade Barite Ore by Flotation in The Southwest Area of China.
Applied Mechanics and Materials, 543-547, 3865-3868.
https://doi.org/10.4028/www.scientific.net/AMM.543-547.3865
[60] Bulatovic, S. M. (2015). Handbook of Flotation Reagents: Chemistry, Theory and Practice, Elsevier.
[61] Shekiladze, A., Kavtelashvili, O., & Bagnashvili, M. (2016). Development of Technology for Enrichment of Silver Containing Ores.
IOP Conference Series: Earth and Environmental Science, 44(5), 052009.
https://doi.org/10.1088/1755-1315/44/5/052009
[62] Demeekul, N., Sikong, L., & Masniyom, M. (2016). Influence of Air Flow Rate and Immersion Depth of Designed Flotation Cell on Barite Beneficiation. In
Materials Science Forum (Vol. 867, pp. 66-70). Trans Tech Publications, Ltd.
https://doi.org/10.4028/www.scientific.net/msf.867.66
[63] Raju, G. B., Ratchambigai, S., Rao, M. A., Vasumathi, N., Vijaya Kumar, T. V., Prabhakar, S., & Rao, S. S. (2016). Beneficiation of Barite Dumps by Flotation Column; Lab-Scale Sudies to Commercial Production.
Transactions of the Indian Institute of Metals, 69(1), 75–81.
https://doi.org/10.1007/s12666-015-0700-z
[64] Ren, Z., Yu, F., Gao, H., Chen, Z., Peng, Y., & Liu, L, (2017). Selective Separation of Fluorite, Brite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants.
Minerals, 7(2), 24.
https://doi.org/10.3390/min7020024
[65] Chen, Z., Ren, Z., Gao, H., Qian, Y., & Zheng, R. (2018). Effect of Modified Starch on Separation of Fuorite from Barite Using Sodium Oleate.
Physicochemical Problems of Mineral Processing, 54(2), 228-237.
https://doi.org/10.5277/ppmp1806
[66] Chen, X., Gu, G., Liu, D., & Zhu, R. (2019). The Flotation Separation of Barite-Calcite Using Sodium Silicate as Depressant in The Presence of Sodium Dodecyl Sulfate.
Physicochemical Problems of Mineral Processing, 55(2), 346-355.
https://doi.org/10.5277/ppmp18136
[67] Denga, J., Liub, C., Yang, S., Lid, H., & Liue, Y. (2019). Flotation Separation of Barite from Calcite Using Acidified Water Glass as the Depressant.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123605.
https://doi.org/10.1016/j.colsurfa.2019.123605
[68] Lu, Y., Liu, W., Wang, X., Cheng, H., Cheng, F., & Miller, J. D. (2020). Lauryl Phosphate Flotation Chemistry in Barite Flotation.
Minerals, 10(3), 280.
https://doi.org/10.3390/min10030280
[69] Liu, C., Zhou, M., Xia, L., Fu, W., Zhou,W., & Yang, S. (2021). The Utilization of Citric Acid as a Depressant for The Flotation Separation of Barite from Fluorite.
Minerals Engineering, 156, 106491.
https://doi.org/10.1016/j.mineng.2020.106491
[70] Oyelola, O. A., Olatunde, B. J., Omoyemi, O. O., Abosede, O. A., & Amos, O. T. (2021). Purification of Kiana Barite for The Purpose of Advance Materials Processing.
Materials Today: Proceedings, 38(Part 2), 1102-1106.
https://doi.org/10.1016/j.matpr.2020.06.149
[71] Xiong, W., Deng, J., Zhao, K., Wang, W., Wang, Y., & Wei, D. (2020). Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector.
Minerals, 10(3), 282.
https://doi.org/10.3390/min10030282
[72] Afolayan, D. O., Adetunji, A. A., Onwualu, A. P., Ogolo, O., & Amankwa, R. K. (2021). Characterization of Barite Reserves in Nigeria for Use as Weighting Agent in Drilling Fluid.
Journal of Petroleum Exploration and Production Technology, 11, 2157-2178.
https://doi.org/10.1007/s13202-021-01164-8
[73] Deniz, V., Umucu, A., & Deniz, O. T. (2022). Estimation of Grade and Recovery in The Concentration of Barite Tailings by The Flotation Using the MLR and ANN Analyses.
Physicochemical Problems of Mineral Processing, 58(5), 150646.
https://doi.org/10.37190/ppmp/150646
[75] Khan, H., Kanwal, F., & Aurangzaib M. (2003). Studies on The Beneficiation of Gunga Barite with Different Concentrations of Hydrochloric Acid.
Journal of the Chemical Society of Pakistan, 24(3), 44-48. Retrieved from
https://jcsp.org.pk/ArticleUpload/1399-6319-1-PB.pdf
[79] Oladapo, M. I., & Adeoye-Oladapo, O. O. (2011). Geophysical Investigation of Barite Deposit in Tunga, Northeastern Nigeria.
International Journal of the Physical Sciences, 6(20), 4760-4774.
https://doi.org/10.5897/IJPS11.337
[81] Deniz, V., & Guler, T. (2018). Production of White Barite from Barite Concentrates of Shaking Tables by Bleaching Process after Magnetic Methods.
Inżynieria Mineralna, R. 19, 1(1), 77-82.
https://doi.org/10.29227/IM-2018-01-12
[82] Mgbemere, H. E., Obidiegwu, E. O., & Bareki, E. (2018). Beneficiation of Azara Barite Ore Using a Combination of Jigging, Froth Flotation and Leaching.
Nigerian Journal of Technology, 37(4), 957-962.
https://doi.org/10.4314/njt.v37i4.14
[83] Mgbemere, H. E., Hassan, S. B., & Sunmola, J. A. (2019). Beneficiation of Barite Ore from Azara in Nassarawa State, Nigeria, Using Froth Flotation.
Nigerian Journal of Technological Development, 16(1) 43-48.
https://doi.org/10.4314/njtd.v16i1.6
[85] Popoola, L. T. & Fadayini, O. (2023). Optimization of Azare Low-Grade Barite Beneficiation: Comparative Study of Response Surface Methodology and Artificial Neural Network Approach.
Heliyon, 9(4), e15338.
https://doi.org/10.1016/j.heliyon.2023.e15338