[1] Torabi, A., & Staroverov, V.N. (2015). Band gap reduction in ZnO and ZnS by creating layered ZnO/ZnS heterostructures. J. Phys. Chem. Lett. 6(11) 2075-2080.
[2] Singh, M,. Goyal, M, & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12(4) 470-475.
[3] Duan, Y., Stinespring, C.D., & Chorpening, B. (2015). Electronic structures, bonding configurations, and band-gap-opening properties of graphene binding with low-concentration fluorine. ChemstryOpen, 4(5) 642-650.
[4] Schrier, J., Demchenko, D.O., Wang, L.W., & Alivisatos, A.P. (2007). Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7(8) 2377-2382.
[5] Hart, J.N., & Allan, N.L. (2013). GaP-ZnS Solid solutions: Semiconductors for efficient visible light absorption and mission. Adv. Mater. 25(21) 2989-2993.
[6] Saha, S., Sarkar, S., Pal, S., & Sarkar, P. (2013). Tuning the energy levels of ZnO/ZnS core/shell nanowires to design an efficient nanowire-based dye-sensitized solar cell. J. Phys. Chem. C, 117(31) 15890-15900.
[7] Saha, S., & Sarkar, P. (2013). Electronic structure of ZnO/ZnS core/shell quantum dots. Chem. Phys. Lett. 555, 191-195.
[8] Gao, X.X., Wang, J., Yu, J.L., & Xu, H.B. (2015). Novel ZnO-ZnS nanowire arrays with heterostructures and enhanced photocatalytic properties. CrystEngComm, 17(33) 6328-6337.
[9] Li, B.X., Wang, Y.F., & Wu, Y.L. (2012). Flower-like ZnO/ZnS heterostructures: Facile synthesis, structural characterization and photocatalytic activity. Chin. J. Inorg. Chem. 28(2) 417-424.
[10] Ma, H., Han, J., Fu, Y., Song, Y., Yu, C., & Dong, X. (2011). Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction. Appl. Catal. B-Environ. 102(3-4) 417-423.
[11] Gao, P., Wang, L., Wang, Y., Chen, Y., Wang, X., & Zhang, G. (2012). One-pot hydrothermal synthesis of heterostructured ZnO/ZnS nanorod arrays with high ethanol-sensing properties. Chem.-Eur. J. 18(15) 4681-4686.
[12] Yu, X.L., Ji, H.M., Wang, H.L., Sun, J., & Du, X.W. (2010). Synthesis and sensing properties of ZnO/ZnS nanocages. Nanoscale Res. Lett. 5, 644-648.
[13] Huang, X., Willinger, M.-G., Fan, H., Xie, Z.-L., Wang, L., Klein-Hoffmann, A., Frank Girgsdies, F., Lee, C.-S., & Meng, X.-M. (2014). Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: Synthesis, structural characterization, and optical properties. Nanoscale, 6(15) 8787-8795.
[14] Baranowska-Korczyc, A., Sobczak, K., Dłużewski, P., Reszka, A., Kowalski, B.J., Kłopotowski, Ł., Elbaum, D., & Fronc, K. (2015). Facile synthesis of core/shell ZnO/ZnS nanofibers by electrospinning and gas-phase sulfidation for biosensor applications. Phys. Chem. Chem. Phys. 17(37) 24029-24037.
[15] Neveux, L., Chiche, D., Bazer-Bachi, D., Favergeon, L., & Pijolat, M. (2012). New insight on the ZnO sulfidation reaction: Evidences for an outward growth process of the ZnS phase. J. Chem. Eng. 181-182, 508-515.
[16] Lonkar, S.P., Pillai, V.V., & Alhassan, S.M. (2018). Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci. Rep. 8, 13401.