[1] Kalpana, R., Maheshwaran, M., Vimali, E., Soosai, M.R., Shivamathi, C.S., Moorthy, I.G., Ashokkumar, B. & Varalakshmi, P. (2020). Decolorization of textile dye by halophilic Eiguobacterium sp.VK1: Biomass and exopolysaccharide (EPS) enhancement for bioremediation of Malachite Green. ChemistrySelect, 5(28) 8787-8797.
[2] Abdelaziz, M.A., Owda, M.E., Abouzeid, R.E., Alaysuy, O., & Mohamed, E.I. (2022). Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles. Int. J. Biol. Macromol. 225, 1462-1475.
[3] Zhou, G., Li, S., Meng, Q., Niu, C., Zhang, X., & Wang, Q. (2023). A new type of highly efficient fir sawdust-based super adsorbent: Remove cationic dyes from wastewater. Surf. Interf. 36, 102637.
[4] Kausor, M.A., & Chakrabortty, D. (2020). Optimization of system parameters and kinetic study of photocatalytic degradation of toxic acid blue 25 dye by Ag3PO4@ RGO nanocomposite. J. Nanopart. Res. 22, 93.
[5] Cao, M., Shen, Y., Yan, Z., Wei, Q., Jiao, T., Shen, Y., & Yue, T. (2021). Extraction-like removal of organic dyes from polluted water by the graphene oxide/PNIPAM composite system. Chem. Eng. J. 405, 126647.
[6] Teo, S.H., Ng, C.H., Islam, A., Abdulkareem-Alsultan, G., Joseph, C.G., Janaun, J., & Awual, M.R. (2022). Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review, J. Clean. Prod. 332, 130039.
[7] Xiong, G., Zhang, Q., Ren, B., You, L., Ding, F., He, Y., & Sun, Y. (2020). Highly efficient and selective adsorption of cationic dyes in aqueous media on microporous hyper crosslinked polymer with abundant and evenly dispersed sulfonic groups. ChemistrySelect 5(22) 6541-6548.
[8] Bhaumik, M., McCrindle, R.I., & Maity, A. (2015). Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. J. Chem. Eng. 260, 716-729.
[9] Tan, Y.J., Sun, L.J., Li, B.T., Zhao, X.H., Yu, T., Ikuno, N., Ishii, K.,& Hu, H.Y. (2017). Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand. Desalination, 419, 1-7.
[10] Ouaddari, H., Karim, A., Achiou, B., Saja, S., Aaddane, A., Bennazha, J., El Hassani, I.E.A., Ouammou, M., & Albizane, A. (2019). New low-cost ultrafiltration membrane made from purified natural clays for direct Red 80 dye removal. J. Environ. Chem. Eng. 7(4) 103268.
[11] Li, Y., Li, H., Liu, F., Zhang, G., Xu, Y., Xiao, T., Long, J., Chen, Z., Liao, D., Zhang, J., & Lin, L. (2020). Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: Materials characterization, process optimization and removal mechanisms. J. Hazard. Mater. 386, 121900.
[12] Finkbeiner, P., Moore, G., Pereira, R., Jefferson, B., Jarvis, P. (2020). The combined influence of hydrophobicity, charge and molecular weight on natural organic matter removal by ion exchange and coagulation. Chemosphere, 238, 124633.
[13] Mohaghegh, N., Endo-Kimura, M., Wang, K., Wei, Z., Najafabadi, A.H., Zehtabi, F., & Kowalska, E. (2023). Apatite-coated Ag/AgBr/TiO2 nanocomposites: Insights into the antimicrobial mechanism in the dark and under visible-light irradiation. Appl. Surf. Sci. 617, 156574.
[14] Agha Beygli, R., Mohaghegh, N., & Rahimi, E. (2019). Metal ion adsorption from wastewater by g-C3N4 modified with hydroxyapatite: a case study from Sarcheshmeh Acid Mine Drainage. Res. Chem. Intermediat. 45, 2255-2268.
[15] Choudhary, R., Pandey, O.P., & Brar, L.K. (2022). Novel ultrasonic pretreatment for HTC carbon nanosphere size control without yield compromise. J. Nanopart. Res. 24, 75.
[16] Zirpe, M., & Thakur, J. (2022). Sono-assisted synthesis of AgFeO2 nanoparticles for efficient removal of Basic Green-4 dye from aqueous solution. J. Nanopart. Res. 24, 240.
[17] Rahmani, M., Kaykhaii, M., & Sasani, M. (2018). Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochim. Acta A, 188, 164-169.
[18] Shojaei, S., Shojaei, S., & Pirkamali, M. (2019). Application of Box–Behnken design approach for removal of acid black 26 from aqueous solution using zeolite: Modeling, optimization, and study of interactive variables. Water Conserv. Sci. Eng. 4(1) 13-19.
[19] Pourabadeh, A. , Baharinikoo, L., Shojaei, S., Mehdizadeh, B., Davoodabadi Farahani, M. & Shojaei, S. (2020). Experimental design and modelling of removal of dyes using nano-zero-valent iron: a simultaneous model. Int. J. Environ. An. Ch. 100(15) 1707-1719.
[20] Rahimi, E., & Mohaghegh, N. (2017). New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage. Environ. Sci. Pollut. R. 24(28) 22353-22360.
[21] Samimi, M., & Shahriari-Moghadam, M. (2021). Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochem. Eng. J. 173 (2021) 108091.
[22] Shojaei, S., Rahmani, M., Khajeh, M., & Abbasian, A.R. (2023). Ultrasound assisted based solid phase extraction for the preconcentration and spectrophotometric determination of malachite green and methylene blue in water samples. Arab. J. Chem. 16(8) 104868.
[23] Guo, Q., Liu, Y., & Qi, G. (2019). Application of high-gravity technology NaOH-modified activated carbon in rotating packed bed (RPB) to adsorb toluene. J. Nanopart. Res. 21, 175.
[24] Samimi, M., & Safari, M. (2022). TMU-24 (Zn-based MOF) as an advance and recyclable adsorbent for the efficient removal of eosin B: Characterization, equilibrium, and thermodynamic studies. Environ. Prog. Sustain. 41(5) e13859.
[25] Faroughi Niya, H., Hazeri, N., Fatahpour, M., & Maghsoodlou, M.T. (2020). Fe3O4@THAM-piperazine: a novel and highly reusable nanocatalyst for one-pot synthesis of 1,8-dioxo-octahydro-xanthenes and benzopyrans. Res. Chem. Intermediat. 46, 3651-3666.
[26] Kaur, G., Jayasundara, J.M.R.V., Singh, G., Pawan, Singh, H., & Singh, J. (2023). Photocatalytic dye degradation by recyclable Zn-Co magnetic ferrites at ambient conditions. Int. J. Environ. An. Ch., DOI: 10.1080/03067319.2022.2161900.
[27] Mirzaei, F. Mohammadi Nilash, M., Sepahvand, H., Fakhari, A.R., & Shaabani, A. (2020). Magnetic solid-phase extraction based on fluconazole-functionalized Fe3O4@SiO2 nanoparticles for the spectrophotometric determination of cationic dyes in environmental water samples. J. Iran. Chem. Soc. 17(7) 1591-1600.
[28] Shojaei, S., Rahmani, M., Khajeh, M., & Abbasian, A.R. (2021). Magnetic-nanoparticle-based dispersive micro-solid phase extraction for the determination of crystal violet in environmental water samples. ChemistrySelect 6(19) 4782 -4790.
[29] Khajeh, M., Sarafraz-Yazdi, A., & Fakhri Moghadam, A. (2017). Modeling of solid-phase tea waste extraction for the removal of manganese and cobalt from water samples by using PSO-artificial neural network and response surface methodology. Arab. J. Chem. 10(Suppl. 2) S1663-S1673.
[30] Kaladgi, A.R., Afzal, A., Muthu Manokar, A., Thakur, D., Agbulut, U., Alshahrani, S., Ahmad Saleh, C., & Subbiah, R. (2021). Integrated Taguchi-GRA-RSM optimization and ANN modelling of thermal performance of zinc oxide nanofluids in an automobile radiator. Case Stud. Therm. Eng. 26, 101068.
[31] Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 209, 425-436.
[32] Samimi, M., & Moeini, S. (2020). Optimization of the Ba2+ uptake in the formation process of hydrogels using central composite design: Kinetics and thermodynamic studies of malachite green removal by Ba-alginate particles. J. Particle Sci. Technol. 6(2) 95-102.
[33] Samimi, M., & Mohadesi, M. (2023). Size estimation of biopolymeric beads produced by electrospray method using artificial neural network. Particul. Sci. Technol. 41(3) 371-377.
[34] Zhu, H., Jiang, R., Li, J., Fu, Y., Jiang, S., & Yao, J. (2017). Magnetically recyclable Fe3O4/Bi2S3 microspheres for effective removal of Congo red dye by simultaneous adsorption and photocatalytic regeneration. Sep. Purif. Technol. 179, 184-193.
[35] Li, L., Li, X., Duan, H., Wang, X., & Luo, C. (2014). Removal of Congo Red by magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres for water purification. Dalton T. 43(22) 8431-8438.
[36] Mou, Y. , Yang, H., & Xu, Z. (2017). Morphology, surface layer evolution, and structure–dye adsorption relationship of porous Fe3O4 MNPs prepared by solvothermal/gas generation process. ACS Sustain. Chem. Eng. 5(3) 2339-2349.
[37] Yan, T.G., Wang, L.J. (2014). Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: Kinetics, equilibrium, and thermodynamics. Water Sci. Technol. 69(3) 612-621.
[38] Ahmadi, K., Ghaedi, M., & Ansari, A. (2015). Comparison of nickel doped zinc sulfide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Congo red dye. Spectrochim. Acta A, 136, 1441-1449.
[39] Wang, P., Wang, X., Yu, S., Zou, Y., Wang, J., Chen, Z., & Wang, X. (2016). Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem. Eng. J. 306, 280-288.