[1] Aravind, G., Raghasudha, M., & Ravinder, D. (2015). Electrical transport properties of nanocrystalline Li–Ni ferrites. J. Materiomics, 1(4) 348-356.
[2] Azadmanjiri, J., & Seyyed Ebrahimi, S.A. (2004). Influence of stoichiometry and calcination condition on the microstructure and phase constitution of NiFe2O4 powders prepared by sol‐gel autocombustion method. Phys. Status Solidi C, 1(12) 3414 - 3417.
[3] Salavati-Niasari, M., Davar, F., & Mahmoudi, T. (2009). A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant, Polyhedron, 28(10) 1455-1458.
[4] Manikandan, V., Mirzaei, A, Vigneselvan, S., Kavita, S., Mane, R.S., Kim, S.S., & Chandrasekaran, J. (2019). Role of ruthenium in the dielectric, magnetic properties of nickel ferrite (Ru−NiFe2O4) nanoparticles and their application in hydrogen sensors. ACS Omega, 4(7) 12919-12926.
[5] Khan, M.A., Islam, M., Ishaque, M., Rahman, I., Genson, A., & Hampshire S. (2009). Structural and physical properties of Ni–Tb–Fe–O system. Mater. Charact. 60(1) 73-78.
[6] Kumbhar, S.S., Mahadik, M., Mohite, V., Hunge, Y., Rajpure, K., & Bhosale, C. (2015). Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films. Mater. Res. Bull. 67, 47-54.
[7] Ishaque, M., Khan, M.A., Ali, I., Khan, H.M., Iqbal, M.A., Islam, M., & Warsi, M.F. (2015). Impacts of yttrium substitution on FMR line-width and magnetic properties of nickel spinel ferrites. J. Magn. Magn. Mater. 382, 98-103.
[8] Alves, T.E.P., Pessoni, H.V.S., & Franco, Jr A. (2017). The effect of Y3+ substitution on the structural, optical band-gap and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 19(25) 16395-16405.
[9] Azadmanjiri, J., & Seyyed Ebrahimi, S.A. (2006). The effects of pH and citric acid concentration on the characteristics of nanocrystalline NiFe2O4 powder synthesized by a sol–gel autocombustion method. ISSN 0031-918X, Phys. Metals Metallogr. 102 (Suppl. 1) S21-S23.
[10] Omidi, S., Davarpanah, A.M., & Abbasian, A.R. (2022). Enhancement of specific surface area of CoFe2O4 powders synthesized by KCl-assisted solution combustion: Effect of KCl content and initial pH. Iran. J. Phys. Res. 22(2), 353-371.
[11] Karoblis, D., Mazeika, K., Raudonis, R., Zarkov, A., & Kareiva, A. (2022). Sol-gel synthesis and characterization of yttrium-doped MgFe2O4 spinel. Materials, 15(21) 7547.
[12] Yao, H., Ning, X., Zhao, H., Hao, A. & Ismail, M. (2021). Effect of Gd-doping on structural, optical, and magnetic properties of NiFe2O4 as-prepared thin films via facile sol-gel approach, ACS Omega, 6(9) 6305-6311.
[13] Abdul, H., Thamraa, A., Ghulam, M., Alhossainy, M.H., Laref, A., Khan, A.R., Ali, I., Farid, H.M.T., Ghrib, T., Ejaz, S.R., Khosa, R.Y. (2021). Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158-169.
[14] Ishaque, M., Islam, M.U., Azhar Khan, M., Rahman I.Z., Genson, A., & Hampshire, S. (2010). Structural, electrical and dielectric properties of yttrium substituted nickel ferrites. Physica B, 405(6) 1532-1540.
[15] Tiwari, R., De, M., Tewari, H.S., & Ghoshal, S.K., (2020). Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method. Results Phys. 16, 102916.
[16] Abdi, Z., Malek Khachatourian, A., & Nemati, A. (2022). Studying the effect of calcination on the optical and magnetic properties of NiFe2O4@ZnO:Ti nanoparticles. Adv. Ceram. Prog. 8(3) 1-7.
[17] Abbasian, A.R., Mahvary, A., & Alirezaei, S. (2021). Salt-assisted solution combustion synthesis of NiFe2O4: Effect of salt type. Ceram. Int. 47(17): 23794-23802.
[18] Paborji, F., Shafiee Afarani, M., Arabi, A.M., & Ghahari, M. (2022). Solution combustion synthesis of FeCr2O4 powders for pigment applications: Effect of fuel type. Int. J .Appl. Ceram. Tec. 19(5) 2406-2418.
[19] Paborji, F., Shafiee Afarani, M., Arabi, A.M., & Ghahari, M. (2023). Synthesis of (Fe,Cr)2O3 solid solution pigment powders for ink application. Int. J. Appl. Ceram. Tec. 20(2) 1154-1166.
[20] Al‐Garalleh, G.A., Bsoul, I., Maswadeh, Y., Al‐Hwaitat, E., & Mahmood, S.H. (2019). Effects of synthesis route on the structural and magnetic properties of Sr1‐xRExFe12O19 nanocrystalline hexaferrites. Appl. Phys. A, 125, 467.
[21] Sharifitabar, M., Vahdati khaki,J., & Haddad Sabzevar, M. (2014). Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2–Al–C system, Int. J. Refract. Met. H. 47, 93-101.
[22] Li, Q., Kartikowati, C.W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep.-UK, 7(1) 9894.
[23] Mozaffari, M., Amighian, J., & Tavakoli, R. (2015). The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles. J. Magn. Magn. Mater. 379, 208-212.