1] Dippong, T., Levei, E.A., & Cadar, O. (2021). Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials-Basel, 11(6) 1560.
[2] Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Jafari Rad, A., Sheysi, N., Abouchenari, A., Mohammadi, A., Karbasi, S., Ahmadi, Z., Esmaeilkhanian, A., Irani, M., Pakseresht, A., Sahmani, S., & Shahedi Asl, M. (2020). Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceram. Int. 46(11) 18391-18412.
[3] Bouferrache, K., Charifi, Z., Baaziz, H., Alsaad, A.M., & Telfah, A. (2020). Electronic structure, magnetic and optic properties of spinel compound NiFe2O4. Semicond. Sci. Tech. 35(9) 095013.
[4] More, G.S., Shivhare, A., Kaur, S.P., Kumar, T.J.D., & Srivastava, R. (2022). Catalytic interplay of metal ions (Cu2+, Ni2+, and Fe2+) in MFe2O4 inverse spinel catalysts for enhancing the activity and selectivity during selective transfer hydrogenation of furfural into 2-methylfuran. Catal. Sci. Technol. 12(15) 4857-4870.
[5] Li, D.-C., Muta, T., Zhang. L.-Q., Yoshio, M., & Noguchi, H. (2004). Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J. Power Sources, 132(1-2)150-155.
[6] Ewais, E.M.M., Hessien, M.M., & El-Geassy, A.-H.A. (2008). In-situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction. J. Aust. Ceram. Soc. 44(1) 57-62.
[7] Zahi, S., Daud, A.R., & Hashim, M. (2007). A comparative study of nickel-zinc ferrites by sol-gel route and solid-state reaction. Mater. Chem. Phys. 106(2-3) 452-456.
[8] Zhang, Z., Yao, G., Zhang, X., Ma, J., & Lin, H. (2015). Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Int. 41(3) 4523-4530.
[9] Janasi, S.R., Emura, M., Landgraf, F.J.G., & Rodrigues, D. (2002). The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders. J. Magn. Magn. Mater. 238(2-3) 168-172.
[10] Komarneni S, D’Arrigo MC, Leonelli C, Pellacani, G.C., & Katsuki, H. (1998). Microwaveâhydrothermal synthesis of nanophase ferrites. J. Am. Ceram. Soc. 81(11) 3041-3043.
[11] Deka, S., and Joy, P.A. (2006). Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Mater. Chem. Phys. 100(1) 98-101.
[12] Yue, Z., Guo, W., Zhou, J., Gui, Z. & Li, L. (2004). Synthesis of nanocrystilline ferrites by sol-gel combustion process: The influence of pH value of solution. J. Magn. Magn. Mater. 270(1-2) 216-223.
[13] Son. S., Taheri. M., Carpenter. E., Harris, V.G., & McHenry, M.E. (2002). Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch. J. Appl. Phys. 91(10) 7589-7591.
[14] Mohamed, R.M., Rashad, M.M., Haraz, F.A., & Sigmund, W. (2010). Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method. J. Magn. Magn. Mater. 322(14) 2058-2064.
[15] Pournajaf, R., and Hassanzadeh-Tabrizi, S.A. (2018). Polyacrylamide synthesis of nanostructured copper aluminate for photocatalytic application. J. Adv. Mater. Process. 5(4) 12-19.
[16] Quiroz, A., Chavira, E., Palomino-Merino, R., Guzmán, J., & Flores, C. (2022). Polymorphic synthesis and structural characterization of NaSbO3 prepared by sol-gel acrylamide polymerization. J. Solid State Chem. 315, 123478.
[17] Sun, H., Bi, H., Jiang, C., Ni, Z., Tian, J., Zhou, W., Qiu, Z. & Lin, Q. (2022). Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products. Renew Energ. 184, 1-14.
[18] Che, H., Wu, Y., Wang, X., Liu, H., & Yan, M. (2023). Improved hydrogen storage properties of Li-Mg-NH system by lithium vanadium oxides. J. Alloy. Compd. 931, 167603.
[19] Ruxiang, Q., Liang, Z., Yu, G., & Youwei, H. (2021). Oxidation characteristics and active group evolution of oil-immersed coal. Environ. Earth. Sci. 80, 433.
[20] Shi, J.-M., Zhang, X., Wu, C.-J., Shi, W., & Liu, L.-D. (2007). Synthesis, crystal structure and magnetic property of a one-dimensional copper (II) complex with 2,5-dimethylpyrazine-1,4-dioxide as bridging ligand. J. Coord. Chem. 60(17) 1827-1832.
[21] Jacintho, G.V.M., Brolo, A.G., Corio, P., Suarez, P.A.Z., & Rubim, J.C. (2009). Structural investigation of MFe2O4 (M= Fe, Co) magnetic fluids. J. Phys. Chem. C, 113(18) 7684-7691.
[22] Mustapha, S., Tijani, J.O., Ndamitso, M.M., Abdulkareem, A.S., Shuaib, D.T., Amigun, A.T. & Abubakar, H.L. (2021). Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson-Hall and Debye-Scherrer methods. Int. Nano Lett. 11, 241-261.
[23] Bouëxière, D., Popa, K., Walter, O., & Cologna, M. (2019). Kinetic study on the grain growth of PuO2 nanocrystals. RSC Adv. 9, 6542-6547.
24] Bernaoui, C.R., Bendraoua, A., Zaoui, F., Gallardo, J.J., Navas, J., Boudia, R.A., Djediai, H., Goual, N.H., & Adjdire, M. (2022). Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: study of the counter anion effect. Mater. Chem. Phys. 292, 126793.
[25] Shendruk, T.N., Desautels, R.D., Southern, B.W., & Van Lierop, J. (2007). The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology, 18(45) 455704.
[26] Sun, L., Zhang, R., Wang, Z., Ju, L., Cao, E. & Zhang, Y. (2017). Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method. J. Magn. Magn. Mater. 421, 65-70.
[27] Patange, S.M., Shirsath, S.E., Toksha, B.G., Jadhav, S.S., & Jadhav, K.M. (2009). Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 106(2) 023914.