Synthesis, characterization, and magnetic properties of NiFe2O4 nanoparticles

Document Type : Research Article

Author

Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

In order to adjust the crystallite size and structure, NiFe2O4 was prepared in this study via a polyacrylamide gel method. Various characterization techniques like XRD, FT-IR, SEM, and VSM were used to learn more about the fabricated materials. The XRD corroborated that a crystalline NiFe2O4 phase with a cubic structure was produced. Microstructural studies showed that the produced particles have an irregular morphology with an average particle size of about 90 nm. The Williamson-Hall equation was utilized to examine the contributions of crystallite size and lattice strain of the samples. STA results showed the decomposition of the polymeric network gel during calcination. The crystallite size increases with increasing calcination temperatures, whereas the lattice strain slumps. The activation energy for crystallite growth was calculated to be 43.2 KJ.mol-1. VSM findings showed that saturation magnetization improves with temperature, which may be attributed to the crystallite growth of the particles. The coercivity of the samples dropped with an increase in the temperature.

Graphical Abstract

Synthesis, characterization, and magnetic properties of NiFe2O4 nanoparticles

Highlights

  • NiFe2O4 was prepared via a polyacrylamide gel method.
  • A crystalline NiFe2O4 phase with a cubic structure is produced.
  • The crystallite size increases with increasing calcination temperature, whereas the lattice strain slumps.
  • The activation energy for crystallite growth was calculated to be 43.2 KJ.mol-1.

Keywords

Main Subjects


1] Dippong, T., Levei, E.A., & Cadar, O. (2021). Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials-Basel, 11(6) 1560.
[2] Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Jafari Rad, A., Sheysi, N., Abouchenari, A., Mohammadi, A., Karbasi, S., Ahmadi, Z., Esmaeilkhanian, A., Irani, M., Pakseresht, A., Sahmani, S., & Shahedi Asl, M. (2020). Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceram. Int. 46(11) 18391-18412.
[3] Bouferrache, K., Charifi, Z., Baaziz, H., Alsaad, A.M., & Telfah, A. (2020). Electronic structure, magnetic and optic properties of spinel compound NiFe2O4. Semicond. Sci. Tech. 35(9) 095013.
[4] More, G.S., Shivhare, A., Kaur, S.P., Kumar, T.J.D., & Srivastava, R. (2022). Catalytic interplay of metal ions (Cu2+, Ni2+, and Fe2+) in MFe2O4 inverse spinel catalysts for enhancing the activity and selectivity during selective transfer hydrogenation of furfural into 2-methylfuran. Catal. Sci. Technol. 12(15) 4857-4870.
[5] Li, D.-C., Muta, T., Zhang. L.-Q., Yoshio, M., & Noguchi, H. (2004). Effect of synthesis method on the electrochemical performance of  LiNi1/3Mn1/3Co1/3O2. J. Power Sources, 132(1-2)150-155.
[6] Ewais, E.M.M., Hessien, M.M., & El-Geassy, A.-H.A. (2008). In-situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction. J. Aust. Ceram. Soc. 44(1) 57-62.
[7] Zahi, S., Daud, A.R., & Hashim, M. (2007). A comparative study of nickel-zinc ferrites by sol-gel route and solid-state reaction. Mater. Chem. Phys. 106(2-3) 452-456.
[8] Zhang, Z., Yao, G., Zhang, X., Ma, J., & Lin, H. (2015). Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Int. 41(3) 4523-4530.
[9] Janasi, S.R., Emura, M., Landgraf, F.J.G., & Rodrigues, D. (2002). The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders. J. Magn. Magn. Mater. 238(2-3) 168-172.
[10] Komarneni S, D’Arrigo MC, Leonelli C, Pellacani, G.C., & Katsuki, H. (1998). Microwave‐hydrothermal synthesis of nanophase ferrites. J. Am. Ceram. Soc. 81(11) 3041-3043.
[11] Deka, S., and Joy, P.A. (2006). Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Mater. Chem. Phys. 100(1) 98-101.
[12] Yue, Z., Guo, W., Zhou, J., Gui, Z. & Li, L. (2004). Synthesis of nanocrystilline ferrites by sol-gel combustion process: The influence of pH value of solution. J. Magn. Magn. Mater. 270(1-2) 216-223.
[13] Son. S., Taheri. M., Carpenter. E., Harris, V.G., & McHenry, M.E. (2002). Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch. J. Appl. Phys. 91(10) 7589-7591.
[14] Mohamed, R.M., Rashad, M.M., Haraz, F.A., & Sigmund, W. (2010). Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method. J. Magn. Magn. Mater. 322(14) 2058-2064.
[15] Pournajaf, R., and Hassanzadeh-Tabrizi, S.A. (2018). Polyacrylamide synthesis of nanostructured copper aluminate for photocatalytic application. J. Adv. Mater. Process. 5(4) 12-19.
[16] Quiroz, A., Chavira, E., Palomino-Merino, R., Guzmán, J., & Flores, C. (2022). Polymorphic synthesis and structural characterization of NaSbO3 prepared by sol-gel acrylamide polymerization. J. Solid State Chem. 315, 123478.
[17] Sun, H., Bi, H., Jiang, C., Ni, Z., Tian, J., Zhou, W., Qiu, Z. & Lin, Q. (2022). Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products. Renew Energ. 184, 1-14.
[18] Che, H., Wu, Y., Wang, X., Liu, H., & Yan, M. (2023). Improved hydrogen storage properties of Li-Mg-NH system by lithium vanadium oxides. J. Alloy. Compd. 931, 167603.
[19] Ruxiang, Q., Liang, Z., Yu, G., & Youwei, H. (2021). Oxidation characteristics and active group evolution of oil-immersed coal. Environ. Earth. Sci. 80, 433.
[20] Shi, J.-M., Zhang, X., Wu, C.-J., Shi, W., & Liu, L.-D. (2007). Synthesis, crystal structure and magnetic property of a one-dimensional copper (II) complex with 2,5-dimethylpyrazine-1,4-dioxide as bridging ligand. J. Coord. Chem. 60(17) 1827-1832.
[21] Jacintho, G.V.M., Brolo, A.G., Corio, P., Suarez, P.A.Z., & Rubim, J.C. (2009). Structural investigation of MFe2O4 (M= Fe, Co) magnetic fluids. J. Phys. Chem. C, 113(18) 7684-7691.
[22] Mustapha, S., Tijani, J.O., Ndamitso, M.M., Abdulkareem, A.S., Shuaib, D.T., Amigun, A.T. & Abubakar, H.L. (2021). Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson-Hall and Debye-Scherrer methods. Int. Nano Lett. 11, 241-261.
[23] Bouëxière, D., Popa, K., Walter, O., & Cologna, M. (2019). Kinetic study on the grain growth of PuO2 nanocrystals. RSC Adv. 9, 6542-6547.
24] Bernaoui, C.R., Bendraoua, A., Zaoui, F., Gallardo, J.J., Navas, J., Boudia, R.A., Djediai, H., Goual, N.H., & Adjdire, M. (2022). Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: study of the counter anion effect. Mater. Chem. Phys. 292, 126793.
[25] Shendruk, T.N., Desautels, R.D., Southern, B.W., & Van Lierop, J. (2007). The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology, 18(45) 455704.
[26] Sun, L., Zhang, R., Wang, Z., Ju, L., Cao, E. & Zhang, Y. (2017). Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method. J. Magn. Magn. Mater. 421, 65-70.
[27] Patange, S.M., Shirsath, S.E., Toksha, B.G., Jadhav, S.S., & Jadhav, K.M. (2009). Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 106(2) 023914.