Activated pharmaceutical ingredients produced by microreactors versus batch processes: A review

Document Type : Review Article

Authors

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In the pharmaceutical industry, drug synthesis is usually carried out by batch method. However, in recent years, continuous methods, specifically microfluidics and microreactors, have attracted a great deal of attention due to advantages such as better mass and heat transfer, safety, selectivity, yield, and surface-to-volume ratio. Thus, in this review, different microreactor properties such as flow regime pattern, operating pressure, selectivity, safety, reaction phase, operating and control, materials, and cost are addressed and discussed. In addition, microreactor applications in the synthesis of chemicals and drugs, polymerization, nanoparticle synthesis, photochemical, biodiesel production, and catalytic microreactors are presented in detail. Furthermore, a comparison of the flow process of a pharmaceutical industry's microreactor and a batch reactor used for different APIs, intermediates, and lead compounds is presented. The results revealed that 50% of such reactions would show more promising results when carried out in a microreactor system, while only 44% of examined cases preferred such systems. Ultimately, these authors believe that the current review is very suitable for newcomers in pharmaceutical industry material production research who might be attracted to this new technology due to the elementary and basic microfluidics concepts discussed in the present manuscript.

Graphical Abstract

Activated pharmaceutical ingredients produced by microreactors versus batch processes: A review

Highlights

  • The importance of the new technology ‘microfluidic and microreactor’ in pharmaceutical industry is addressed.
  • The properties of micro reactor and its benefits toward batch reactor (yield, conversion, mass transfer and heat transfer) are discussed.
  • Syntheses of active pharmaceutical ingredients, intermediates and lead compounds are reported employing microreactors and continuous flow technology.

Keywords

Main Subjects


[1] Yoo, W.-J., Ishitani, H., Saito, Y., Laroche, B. & Kobayashi, S. (2020). Reworking organic synthesis for the modern age: Synthetic strategies based on continuous-flow addition and condensation reactions with heterogeneous catalysts. J. Org. Chem. 85(8) 5132-5145.
[2] Akwi, F. M. & Watts. P. (2018). Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem. Commun. 54(99)  13894-13928.
[3] Mak, K. -K. & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today, 24(3) 773-780.
[4] Chen, H., Engkvist, O., Wang, Y., Olivecrona, M.  &  Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discov. Today, 23(6) 1241-1250.
[5] Trenfield, S. J., Awad, A., Goyanes, A., Gaisford, S., & Basit, A. W. (2018). 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol. Sci. 39(5) 440-451. 
[6] Yoshida, J. (2015). Basics of flow microreactor synthesis. Tokyo, Springer Japan.
[7] Bennett, J. A., Campbell,  Z. S. & Abolhasani, M. (2019). Role of continuous flow processes in green manufacturing of pharmaceuticals and specialty chemicals. Curr. Opin. Chem. Eng. 26, 9-19.
[8] Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101) 368-373.
[9] Shang, L., Cheng, Y., & Zhao, Y. (2017). Emerging droplet microfluidics. Chem. Rev. 117(12) 7964-8040.
[10] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L.,  Choi, C.-H. et al. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47(15) 5646-5683.
[11] Choi, T. M., Lee, G. H., Kim, Y. ‐S., Park, J.‐G., Hwang, H. & Kim, S. ‐H. (2019). Photonic microcapsules containing single‐crystal colloidal arrays with optical anisotropy. Adv. Mater. 31(18) 1900693.
[12] Capretto, L., Carugo, D., Mazzitelli, S., Nastruzzi, C., & Zhang, X. (2013). Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv. Drug Deliver. Rev. 65(11-12) 1496-1532.
[13] Godfrey, A. G., Masquelin, T., & Hemmerle, H. (2013). A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century. Drug Discov. Today, 18(17-18) 795-802.
[14] McQuade, D. T., & Seeberger, P. H. (2013). Applying flow chemistry: methods, materials, and multistep synthesis. J. Org. Chem. 78(13) 6384-6389.
[15] Wang, Z., Chen, Y., Xie, P., Shang, R., & Ma, J. (2016). Removal of microcystis aeruginosa by UV-activated persulfate: Performance and characteristics. Chem. Eng. J. 300, 245-253.
[16] Mills, P. L., Quiram, D. J., & Ryley, J. F. (2007). Microreactor technology and process miniaturization for catalytic reactions - A perspective on recent developments and emerging technologies. Chem. Eng. Sci. 62(24) 6992-7010.
[17] Hartman, R. L., McMullen, J. P., & Jensen, K. F. (2011). Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Edit. 50(33) 7502-7519.
[18] Gürsel, I. V., Noël, T., Wang, Q., & Hessel, V. (2015). Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem. 17(4) 2012-2026.
[19] Plutschack, M. B., Pieber, B., Gilmore, K., & Seeberger, P. H. (2017). The hitchhiker’s guide to flow chemistry. Chem. Rev. 117(18) 11796-11893.
[20] Porta, R., Benaglia, M., & Puglisi, A. (2016). Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 20(1) 2-25.
[21] Atencia, J., & Beebe, D. J. (2005). Controlled microfluidic interfaces. Nature, 437(7059) 648-655.
[22] Noël, T., & Buchwald, S. L. (2011). Cross-coupling in flow. Chem. Soc. Rev. 40(10) 5010-5029.
[23] Chen, H., Ran, T., Gan, Y., Zhou, J., Zhang, Y., Zhang, L., Zhang, D. & Jiang, L. (2018). Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17(10) 935-942.
[24] Puigmartí-Luis, J. (2014). Microfluidic platforms: a mainstream technology for the preparation of crystals. Chem. Soc. Rev. 43(7) 2253-2271.
[25] KOBELCO Group, "What is a Micro Channel Reactor & Details", retrieved March 2022 from https://www.kobelco.co.jp/english/products/ecmachinery/smcr/overview.html
[26] Gupta, S., Wang, W. S., & Vanapalli, S. A. (2016). Microfluidic viscometers for shear rheology of complex fluids and biofluids. Biomicrofluidics, 10(4) 043402.
[27] Kenis, P. J. A., Ismagilov, R. F., & Whitesides, G. M. (1999). Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 285(5424) 83-85.
[28] Shestopalov, I., Tice, J. D., & Ismagilov, R. F. (2004). Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip, 4(4) 316-321.
[29] Zheng, B., Tice, J. D., & Ismagilov, R. F. (2004). Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76(17) 4977-4982.
[30] Tanimu, A., Jaenicke, S., & Alhooshani, K. (2017). Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J. 327, 792-821.
[31] Fanelli, F., Parisi, G., Degennaro, L., & Luisi, R. (2017). Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J. Org. Chem. 13(1) 520-542.
[32] Šalić, A., Tušek, A., & Zelić, B. (2012). Application of microreactors in medicine and biomedicine. J. Appl. Biomed. 10(3) 137-153.
[33] Yue, J. (2018). Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today, 308, 3-19.
[34] Cambie, D., Bottecchia, C., Straathof, N. J. W.,  Hessel, V., & Noel, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116(17) 10276-10341.
[35] Niu, G., Ruditskiy, A., Vara, M., & Xia, Y. (2015).  Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem. Soc. Rev. 44(16) 5806-5820.
[36] Lee, C. C., Sui, G., Elizarov, A., Shu, C. J., Shin, Y. S., Dooley, A.N., Huang, J., Daridon, A., Wyatt, P., Stout, D. & Kolb, H. C. (2005). Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science, 310(5755) 1793-1796.
[37] Guardingo, M., Busqué, F., & Ruiz-Molina, D. (2016). Reactions in ultra-small droplets by tip-assisted chemistry. Chem. Commun. 52(78) 11617-11626.
[38] Kaminski, T. S., & Garstecki, P. (2017). Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46(20) 6210-6226.
[39] Theberge, A. B., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F., & Huck, W. T. S. (2010). Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Edit. 49(34) 5846-5868.
[40] Song, H., Chen, D. L., & Ismagilov, R. F. (2006). Reactions in droplets in microfluidic channels. Angew. Chem. Int. Edit. 49(44) 7336-7356.
[41] Capretto, L., Cheng, W., Hill, M., & Zhang, X. (2011). Micromixing within microfluidic devices. In: Lin, B. (eds), Microfluidics. Topics in Current Chemistry, vol. 304, Springer, Berlin, Heidelberg. pp. 27-68.
[42] Hessel, V., Löwe, H., & Schönfeld, F. (2005). Micromixers- Aa review on passive and active mixing principles. Chem. Eng. Sci. 60(8-9) 2479-2501.
[43] Falk, L., & Commenge, J. -M. (2010). Performance comparison of micromixers. Chem. Eng. Sci. 60(1) 405-411.
[44] Yoshida, J. -I, Nagaki, A., Iwasaki, T., & Suga, S. (2005). Enhancement of chemical selectivity by microreactors. Chem. Eng. Technol. 28(3) 259-266.
[45] Liebner, C., Fischer, J., Heinrich, S., Lange, T., Hieronymus, H., & Klemm, E. (2012). Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures. Process Saf. Environ. 90(2) 77-82.
[46] Noël, T., & Hessel, V. (2013). Membrane microreactors: gas–liquid reactions made easy. ChemSusChem, 6(3) 405-407.
[47] Mallia, C. J., & Baxendale, I. R. (2016). The use of gases in flow synthesis. Org. Process Res. Dev. 20(2) 327-360.
[48] Liu, Y., & Jiang, X. (2017). Why microfluidics? Merits and trends in chemical synthesis. Lab Chip, 17(23) 3960-3978.
[49] Li, F., Macdonald, N. P., Guijt, R. M., & Breadmore, M. C. (2017). Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing. Anal. Chem. 89(23) 12805-12811.
[50] Liu, Y., Sun, L., Zhang, H., Shang, L., & Zhao, Y. (2021). Microfluidics for drug development: From synthesis to evaluation. Chem. Rev. 121(13) 7468-7529.
[51] Shallan, A. I., & Priest, C. (2019). Microfluidic process intensification for synthesis and formulation in the pharmaceutical industry. Chem. Eng. Process. 142, 107559.
[52] Coyle, E. E., & Oelgemöller, M. (2008). Micro-photochemistry: Photochemistry in microstructured reactors. The new photochemistry of the future?. Photochem. Photobio. Sci. 7, 1313-1322.
[53] Kim, S. ‐H., Jeon, S. ‐J., Yi, G. ‐R., Heo, C. ‐J., Choi, J. H., & Yang, S.-M. (2008). Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures. Adv. Mater. 20(9) 1649-1655.
[54] Gioiello, A., Piccinno, A., Lozza, A. M., & Cerra, B. (2020). The medicinal chemistry in the era of machines and automation: recent advances in continuous flow technology. J. Med. Chem. 63(13) 6624-6647.
[55] Bojang, A. A., & Wu, H. -S. (2020). Design, fundamental principles of fabrication and applications of microreactors. Processes, 8(8) 891.
[56] Suryawanshi, P. L., Gumfekar, S. P., Bhanvase, B. A., Sonawane, S. H., & Pimplapure, M. S. (2018). A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 189, 431-448.
[57] Watts, P., & Haswell, S. J. (2003). Continuous flow reactors for drug discovery. Drug Discov. Today, 8(13) 586-593.
[58] Wang, Z., Chen, Y., Xie, P., Shang, R., & Ma, J. (2016). Removal of Microcystis aeruginosa by UV-activated persulfate: performance and characteristics. Chem. Eng. J. 300, 245-253.
[59] Gopi, R., Thangarasu, V. & Ramanathan, A. (2022). A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production. Renew. Sust. Energ. Rev. 154, 111869.
[60] Tanasanti, M.,  Sujaritthanyatrakul, C., Dhanarun, K., Sahatrakul, K., Sakorncharoun, P., Manawatthana, S., Sanyathitiseree, P. & Sirinarumittr, K. (2009). Electroejaculation and semen evaluation in olive ridley turtle (Lepidochelys olivacea) and hawksbill turtle (Eretmochelys imbricata) in Thailand. In Proceedings of the 4th International Symposium on SEASTAR2000 and Asian Bio-logging Science (The 8th SEASTAR2000 workshop), pp. 29-32. Graduate school of Informatics, Kyoto University, Japan.
[61] Rossetti, I. (2018). Continuous flow (micro-) reactors for heterogeneously catalyzed reactions: Main design and modelling issues. Catal. Today, 308, 20-31.
[62] Lee, C. -Y., & Fu, L. -M. (2018). Recent advances and applications of micromixers. Sensor. Actuat. B- Chem. 259, 677-702.
[63] Yin, B., Yue, W., Sohan, A. S. M. M. F., Zhou, T., Qian, C., & Wan, X. (2021). Micromixer with Fine-Tuned Mathematical Spiral Structures. ACS Omega, 6(45) 30779-30789.
[64] Lee, C. -Y., Wang, W. -T., Liu, C. -C. & Fu, L. -M. (2016). Passive mixers in microfluidic systems: A review. Chem. Eng. J. 288, 146-160.
[65] Bayareh, M., Nazemi Ashani, M., Usefian, A. (2020). Active and passive micromixers: A comprehensive review. Chem. Eng. Process. 147, 107771.
[66] Hu, X., Yang, F., Zhao, H., Guo, M. & Wang, Y. (2021). Design and evaluation of three-dimensional zigzag chaotic micromixers for biochemical applications. Ind. Eng. Chem. Res. 60(44) 16116-16125.
[67] Shah, I., Kim, S. W., Kim, K., Doh, Y. H., & Choi, K. H. (2019). Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chem. Eng. J. 358, 691-706.
[68] Raza, W., Hossain, S., & Kim, K. -Y. (2018). Effective mixing in a short serpentine split-and-recombination micromixer. Sensor. Actuat. B- Chem. 258, 381-392.
[69] Leclerc, E., Corlu, A., Griscom, L., Baudoin, R., &  Legallais, C. (2006). Guidance of liver and kidney organotypic cultures inside rectangular silicone microchannels. Biomaterials, 27(22) 4109-4119.
[70] Watts, P., & Haswell, S. J. (2003). Continuous flow reactors for drug discovery. Drug Discov. Today, 8(13) 586-593.
[71] Kang, L., Chung, B. G., Langer, R., &  Khademhosseini, A. (2008). Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov. Today, 13(1-2) 1-13.
[72] Roberge, D. M., Ducry, L., Bieler, N., Cretton, P., & Zimmermann, B. (2005). Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?. Chem. Eng. Technol. 28(3) 318-323.
[73] Chován, T., & Guttman, A. (2002). Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol. 20(3) 116-122.
[74] Maguire, T. J., Novik, E., Chao, P.,  Barminko, J., Nahmias, Y., Yarmush, M. L. & Cheng, K. -C. (2009). Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates. Curr. Drug Metab. 10(10) 1192-1199.
[75] Baraldi, P. T., & Hessel, V. (2012). Micro reactor and flow chemistry for industrial applications in drug discovery and development. Green Process. Synth. 1, 149-167.
[76] Brocken, L., Price, P. D., Whittaker, J., & Baxendale, I. R. (2017). Continuous flow synthesis of poly (acrylic acid) via free radical polymerisation. React. Chem. Eng. 2(5) 662-668.
[77] Lévesque, F., & Seeberger., P.H. (2012). Continuous‐flow synthesis of the anti‐malaria drug artemisinin. Angew. Chem. Int. Edit. 51(7) 1706-1709.
[78] Qian, Z., Baxendale, I. R. & Ley, S. V. (2010). A flow process using microreactors for the preparation of a quinolone derivative as a potent 5HT1B Antagonist. Synlett, 2010(4) 505-508.
[79] Bogaert-Alvarez, R. J., Demena, P., Kodersha, G., Polomski, R. E., Soundararajan, N., & Wang, S. S. Y. (2001). Continuous processing to control a potentially hazardous process: Conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethyl chromenes (2,2-dimethyl-2H-1-benzopyrans). Org. Process Res. Dev. 5(6) 636-645.
[80] Viviano, M., Glasnov, T. N., Reichart, B., Tekautz, G., & Kappe, C. O. (2011). A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Process Res. Dev. 15(4) 858-870.
[81] Lv, Y., Yu, Z. & Su, W. (2011). A Continuous Antagonist. Synlett, 2010(4) 505-508.
[79] Bogaert-Alvarez, R. J., Demena, P., Kodersha, G., Polomski, R. E., Soundararajan, N., & Wang, S. S. Y. (2001). Continuous processing to control a potentially hazardous process: Conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethyl chromenes (2,2-dimethyl-2H-1-benzopyrans). Org. Process Res. Dev. 5(6) 636-645.
[80] Viviano, M., Glasnov, T. N., Reichart, B., Tekautz, G., & Kappe, C. O. (2011). A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Process Res. Dev. 15(4) 858-870.
[81] Lv, Y., Yu, Z. & Su, W. (2011). A Continuous Antagonist. Synlett, 2010(4) 505-508.
[79] Bogaert-Alvarez, R. J., Demena, P., Kodersha, G., Polomski, R. E., Soundararajan, N., & Wang, S. S. Y. (2001). Continuous processing to control a potentially hazardous process: Conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethyl chromenes (2,2-dimethyl-2H-1-benzopyrans). Org. Process Res. Dev. 5(6) 636-645.
[80] Viviano, M., Glasnov, T. N., Reichart, B., Tekautz, G., & Kappe, C. O. (2011). A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Process Res. Dev. 15(4) 858-870.
[81] Lv, Y., Yu, Z. & Su, W. (2011). A Continuous kilogram-scale process for the manufacture of 7-Ethyltryptophol." Org. Process Res. Dev. 15(2) 471-475.
[82] Vaske, Y. S. M., Mahoney, M. E., Konopelski, J. P., Rogow, D. L. & McDonald, W. J. (2010). Enantiomerically pure trans-β-lactams from α-amino acids via compact fluorescent light (CFL) continuous-flow photolysis. J. Am. Chem. Soc. 132(32) 11379-11385.
[83] Tietze, L. F., & Liu, D. (2008). Continuous-flow microreactor multi-step synthesis of an aminonaphthalene derivative as starting material for the preparation of novel anticancer agents. Arkivoc, 2008(8) 193-210.