[1] Yoo, W.-J., Ishitani, H., Saito, Y., Laroche, B. & Kobayashi, S. (2020). Reworking organic synthesis for the modern age: Synthetic strategies based on continuous-flow addition and condensation reactions with heterogeneous catalysts. J. Org. Chem. 85(8) 5132-5145.
[2] Akwi, F. M. & Watts. P. (2018). Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem. Commun. 54(99) 13894-13928.
[3] Mak, K. -K. & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today, 24(3) 773-780.
[4] Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discov. Today, 23(6) 1241-1250.
[5] Trenfield, S. J., Awad, A., Goyanes, A., Gaisford, S., & Basit, A. W. (2018). 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol. Sci. 39(5) 440-451.
[6] Yoshida, J. (2015). Basics of flow microreactor synthesis. Tokyo, Springer Japan.
[7] Bennett, J. A., Campbell, Z. S. & Abolhasani, M. (2019). Role of continuous flow processes in green manufacturing of pharmaceuticals and specialty chemicals. Curr. Opin. Chem. Eng. 26, 9-19.
[8] Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101) 368-373.
[9] Shang, L., Cheng, Y., & Zhao, Y. (2017). Emerging droplet microfluidics. Chem. Rev. 117(12) 7964-8040.
[10] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L., Choi, C.-H. et al. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47(15) 5646-5683.
[11] Choi, T. M., Lee, G. H., Kim, Y. ‐S., Park, J.‐G., Hwang, H. & Kim, S. ‐H. (2019). Photonic microcapsules containing single‐crystal colloidal arrays with optical anisotropy. Adv. Mater. 31(18) 1900693.
[12] Capretto, L., Carugo, D., Mazzitelli, S., Nastruzzi, C., & Zhang, X. (2013). Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv. Drug Deliver. Rev. 65(11-12) 1496-1532.
[13] Godfrey, A. G., Masquelin, T., & Hemmerle, H. (2013). A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century. Drug Discov. Today, 18(17-18) 795-802.
[14] McQuade, D. T., & Seeberger, P. H. (2013). Applying flow chemistry: methods, materials, and multistep synthesis. J. Org. Chem. 78(13) 6384-6389.
[15] Wang, Z., Chen, Y., Xie, P., Shang, R., & Ma, J. (2016). Removal of microcystis aeruginosa by UV-activated persulfate: Performance and characteristics. Chem. Eng. J. 300, 245-253.
[16] Mills, P. L., Quiram, D. J., & Ryley, J. F. (2007). Microreactor technology and process miniaturization for catalytic reactions - A perspective on recent developments and emerging technologies. Chem. Eng. Sci. 62(24) 6992-7010.
[17] Hartman, R. L., McMullen, J. P., & Jensen, K. F. (2011). Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Edit. 50(33) 7502-7519.
[18] Gürsel, I. V., Noël, T., Wang, Q., & Hessel, V. (2015). Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem. 17(4) 2012-2026.
[19] Plutschack, M. B., Pieber, B., Gilmore, K., & Seeberger, P. H. (2017). The hitchhiker’s guide to flow chemistry. Chem. Rev. 117(18) 11796-11893.
[20] Porta, R., Benaglia, M., & Puglisi, A. (2016). Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 20(1) 2-25.
[21] Atencia, J., & Beebe, D. J. (2005). Controlled microfluidic interfaces. Nature, 437(7059) 648-655.
[22] Noël, T., & Buchwald, S. L. (2011). Cross-coupling in flow. Chem. Soc. Rev. 40(10) 5010-5029.
[23] Chen, H., Ran, T., Gan, Y., Zhou, J., Zhang, Y., Zhang, L., Zhang, D. & Jiang, L. (2018). Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17(10) 935-942.
[24] Puigmartí-Luis, J. (2014). Microfluidic platforms: a mainstream technology for the preparation of crystals. Chem. Soc. Rev. 43(7) 2253-2271.
[25] KOBELCO Group, "What is a Micro Channel Reactor & Details", retrieved March 2022 from https://www.kobelco.co.jp/english/products/ecmachinery/smcr/overview.html
[26] Gupta, S., Wang, W. S., & Vanapalli, S. A. (2016). Microfluidic viscometers for shear rheology of complex fluids and biofluids. Biomicrofluidics, 10(4) 043402.
[27] Kenis, P. J. A., Ismagilov, R. F., & Whitesides, G. M. (1999). Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 285(5424) 83-85.
[28] Shestopalov, I., Tice, J. D., & Ismagilov, R. F. (2004). Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip, 4(4) 316-321.
[29] Zheng, B., Tice, J. D., & Ismagilov, R. F. (2004). Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76(17) 4977-4982.
[30] Tanimu, A., Jaenicke, S., & Alhooshani, K. (2017). Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J. 327, 792-821.
[31] Fanelli, F., Parisi, G., Degennaro, L., & Luisi, R. (2017). Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J. Org. Chem. 13(1) 520-542.
[32] Šalić, A., Tušek, A., & Zelić, B. (2012). Application of microreactors in medicine and biomedicine. J. Appl. Biomed. 10(3) 137-153.
[33] Yue, J. (2018). Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today, 308, 3-19.
[34] Cambie, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., & Noel, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116(17) 10276-10341.
[35] Niu, G., Ruditskiy, A., Vara, M., & Xia, Y. (2015). Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem. Soc. Rev. 44(16) 5806-5820.
[36] Lee, C. C., Sui, G., Elizarov, A., Shu, C. J., Shin, Y. S., Dooley, A.N., Huang, J., Daridon, A., Wyatt, P., Stout, D. & Kolb, H. C. (2005). Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science, 310(5755) 1793-1796.
[37] Guardingo, M., Busqué, F., & Ruiz-Molina, D. (2016). Reactions in ultra-small droplets by tip-assisted chemistry. Chem. Commun. 52(78) 11617-11626.
[38] Kaminski, T. S., & Garstecki, P. (2017). Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46(20) 6210-6226.
[39] Theberge, A. B., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F., & Huck, W. T. S. (2010). Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Edit. 49(34) 5846-5868.
[40] Song, H., Chen, D. L., & Ismagilov, R. F. (2006). Reactions in droplets in microfluidic channels. Angew. Chem. Int. Edit. 49(44) 7336-7356.
[41] Capretto, L., Cheng, W., Hill, M., & Zhang, X. (2011). Micromixing within microfluidic devices. In: Lin, B. (eds), Microfluidics. Topics in Current Chemistry, vol. 304, Springer, Berlin, Heidelberg. pp. 27-68.
[42] Hessel, V., Löwe, H., & Schönfeld, F. (2005). Micromixers- Aa review on passive and active mixing principles. Chem. Eng. Sci. 60(8-9) 2479-2501.
[43] Falk, L., & Commenge, J. -M. (2010). Performance comparison of micromixers. Chem. Eng. Sci. 60(1) 405-411.
[44] Yoshida, J. -I, Nagaki, A., Iwasaki, T., & Suga, S. (2005). Enhancement of chemical selectivity by microreactors. Chem. Eng. Technol. 28(3) 259-266.
[45] Liebner, C., Fischer, J., Heinrich, S., Lange, T., Hieronymus, H., & Klemm, E. (2012). Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures. Process Saf. Environ. 90(2) 77-82.
[46] Noël, T., & Hessel, V. (2013). Membrane microreactors: gas–liquid reactions made easy. ChemSusChem, 6(3) 405-407.
[47] Mallia, C. J., & Baxendale, I. R. (2016). The use of gases in flow synthesis. Org. Process Res. Dev. 20(2) 327-360.
[48] Liu, Y., & Jiang, X. (2017). Why microfluidics? Merits and trends in chemical synthesis. Lab Chip, 17(23) 3960-3978.
[49] Li, F., Macdonald, N. P., Guijt, R. M., & Breadmore, M. C. (2017). Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing. Anal. Chem. 89(23) 12805-12811.
[50] Liu, Y., Sun, L., Zhang, H., Shang, L., & Zhao, Y. (2021). Microfluidics for drug development: From synthesis to evaluation. Chem. Rev. 121(13) 7468-7529.
[51] Shallan, A. I., & Priest, C. (2019). Microfluidic process intensification for synthesis and formulation in the pharmaceutical industry. Chem. Eng. Process. 142, 107559.
[52] Coyle, E. E., & Oelgemöller, M. (2008). Micro-photochemistry: Photochemistry in microstructured reactors. The new photochemistry of the future?. Photochem. Photobio. Sci. 7, 1313-1322.
[53] Kim, S. ‐H., Jeon, S. ‐J., Yi, G. ‐R., Heo, C. ‐J., Choi, J. H., & Yang, S.-M. (2008). Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures. Adv. Mater. 20(9) 1649-1655.
[54] Gioiello, A., Piccinno, A., Lozza, A. M., & Cerra, B. (2020). The medicinal chemistry in the era of machines and automation: recent advances in continuous flow technology. J. Med. Chem. 63(13) 6624-6647.
[55] Bojang, A. A., & Wu, H. -S. (2020). Design, fundamental principles of fabrication and applications of microreactors. Processes, 8(8) 891.
[56] Suryawanshi, P. L., Gumfekar, S. P., Bhanvase, B. A., Sonawane, S. H., & Pimplapure, M. S. (2018). A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 189, 431-448.
[57] Watts, P., & Haswell, S. J. (2003). Continuous flow reactors for drug discovery. Drug Discov. Today, 8(13) 586-593.
[58] Wang, Z., Chen, Y., Xie, P., Shang, R., & Ma, J. (2016). Removal of Microcystis aeruginosa by UV-activated persulfate: performance and characteristics. Chem. Eng. J. 300, 245-253.
[59] Gopi, R., Thangarasu, V. & Ramanathan, A. (2022). A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production. Renew. Sust. Energ. Rev. 154, 111869.
[60] Tanasanti, M., Sujaritthanyatrakul, C., Dhanarun, K., Sahatrakul, K., Sakorncharoun, P., Manawatthana, S., Sanyathitiseree, P. & Sirinarumittr, K. (2009). Electroejaculation and semen evaluation in olive ridley turtle (Lepidochelys olivacea) and hawksbill turtle (Eretmochelys imbricata) in Thailand. In Proceedings of the 4th International Symposium on SEASTAR2000 and Asian Bio-logging Science (The 8th SEASTAR2000 workshop), pp. 29-32. Graduate school of Informatics, Kyoto University, Japan.
[61] Rossetti, I. (2018). Continuous flow (micro-) reactors for heterogeneously catalyzed reactions: Main design and modelling issues. Catal. Today, 308, 20-31.
[62] Lee, C. -Y., & Fu, L. -M. (2018). Recent advances and applications of micromixers. Sensor. Actuat. B- Chem. 259, 677-702.
[63] Yin, B., Yue, W., Sohan, A. S. M. M. F., Zhou, T., Qian, C., & Wan, X. (2021). Micromixer with Fine-Tuned Mathematical Spiral Structures. ACS Omega, 6(45) 30779-30789.
[64] Lee, C. -Y., Wang, W. -T., Liu, C. -C. & Fu, L. -M. (2016). Passive mixers in microfluidic systems: A review. Chem. Eng. J. 288, 146-160.
[65] Bayareh, M., Nazemi Ashani, M., Usefian, A. (2020). Active and passive micromixers: A comprehensive review. Chem. Eng. Process. 147, 107771.
[66] Hu, X., Yang, F., Zhao, H., Guo, M. & Wang, Y. (2021). Design and evaluation of three-dimensional zigzag chaotic micromixers for biochemical applications. Ind. Eng. Chem. Res. 60(44) 16116-16125.
[67] Shah, I., Kim, S. W., Kim, K., Doh, Y. H., & Choi, K. H. (2019). Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chem. Eng. J. 358, 691-706.
[68] Raza, W., Hossain, S., & Kim, K. -Y. (2018). Effective mixing in a short serpentine split-and-recombination micromixer. Sensor. Actuat. B- Chem. 258, 381-392.
[69] Leclerc, E., Corlu, A., Griscom, L., Baudoin, R., & Legallais, C. (2006). Guidance of liver and kidney organotypic cultures inside rectangular silicone microchannels. Biomaterials, 27(22) 4109-4119.
[70] Watts, P., & Haswell, S. J. (2003). Continuous flow reactors for drug discovery. Drug Discov. Today, 8(13) 586-593.
[71] Kang, L., Chung, B. G., Langer, R., & Khademhosseini, A. (2008). Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov. Today, 13(1-2) 1-13.
[72] Roberge, D. M., Ducry, L., Bieler, N., Cretton, P., & Zimmermann, B. (2005). Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?. Chem. Eng. Technol. 28(3) 318-323.
[73] Chován, T., & Guttman, A. (2002). Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol. 20(3) 116-122.
[74] Maguire, T. J., Novik, E., Chao, P., Barminko, J., Nahmias, Y., Yarmush, M. L. & Cheng, K. -C. (2009). Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates. Curr. Drug Metab. 10(10) 1192-1199.
[75] Baraldi, P. T., & Hessel, V. (2012). Micro reactor and flow chemistry for industrial applications in drug discovery and development. Green Process. Synth. 1, 149-167.
[76] Brocken, L., Price, P. D., Whittaker, J., & Baxendale, I. R. (2017). Continuous flow synthesis of poly (acrylic acid) via free radical polymerisation. React. Chem. Eng. 2(5) 662-668.
[77] Lévesque, F., & Seeberger., P.H. (2012). Continuous‐flow synthesis of the anti‐malaria drug artemisinin. Angew. Chem. Int. Edit. 51(7) 1706-1709.
[78] Qian, Z., Baxendale, I. R. & Ley, S. V. (2010). A flow process using microreactors for the preparation of a quinolone derivative as a potent 5HT1B Antagonist. Synlett, 2010(4) 505-508.
[79] Bogaert-Alvarez, R. J., Demena, P., Kodersha, G., Polomski, R. E., Soundararajan, N., & Wang, S. S. Y. (2001). Continuous processing to control a potentially hazardous process: Conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethyl chromenes (2,2-dimethyl-2H-1-benzopyrans). Org. Process Res. Dev. 5(6) 636-645.
[80] Viviano, M., Glasnov, T. N., Reichart, B., Tekautz, G., & Kappe, C. O. (2011). A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Process Res. Dev. 15(4) 858-870.
[81] Lv, Y., Yu, Z. & Su, W. (2011). A Continuous Antagonist. Synlett, 2010(4) 505-508.
[79] Bogaert-Alvarez, R. J., Demena, P., Kodersha, G., Polomski, R. E., Soundararajan, N., & Wang, S. S. Y. (2001). Continuous processing to control a potentially hazardous process: Conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethyl chromenes (2,2-dimethyl-2H-1-benzopyrans). Org. Process Res. Dev. 5(6) 636-645.
[80] Viviano, M., Glasnov, T. N., Reichart, B., Tekautz, G., & Kappe, C. O. (2011). A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Process Res. Dev. 15(4) 858-870.
[81] Lv, Y., Yu, Z. & Su, W. (2011). A Continuous Antagonist. Synlett, 2010(4) 505-508.
[79] Bogaert-Alvarez, R. J., Demena, P., Kodersha, G., Polomski, R. E., Soundararajan, N., & Wang, S. S. Y. (2001). Continuous processing to control a potentially hazardous process: Conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethyl chromenes (2,2-dimethyl-2H-1-benzopyrans). Org. Process Res. Dev. 5(6) 636-645.
[80] Viviano, M., Glasnov, T. N., Reichart, B., Tekautz, G., & Kappe, C. O. (2011). A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Process Res. Dev. 15(4) 858-870.
[81] Lv, Y., Yu, Z. & Su, W. (2011). A Continuous kilogram-scale process for the manufacture of 7-Ethyltryptophol." Org. Process Res. Dev. 15(2) 471-475.
[82] Vaske, Y. S. M., Mahoney, M. E., Konopelski, J. P., Rogow, D. L. & McDonald, W. J. (2010). Enantiomerically pure trans-β-lactams from α-amino acids via compact fluorescent light (CFL) continuous-flow photolysis. J. Am. Chem. Soc. 132(32) 11379-11385.
[83] Tietze, L. F., & Liu, D. (2008). Continuous-flow microreactor multi-step synthesis of an aminonaphthalene derivative as starting material for the preparation of novel anticancer agents. Arkivoc, 2008(8) 193-210.