Synthesis and characterization of the aminated nano-zeolite: A green heterogeneous nanocatalyst for the synthesis of valuable organic compounds

Document Type : Research Article


Department of Chemistry, Qom University of Technology, Qom, Iran


In this study, natural surface-modified nano-clinoptilolite, NCP@SiO3Pr(CH2)6N4, was synthesized and fully characterized using various analytical techniques, including FT-IR, XRD, SEM, EDS, TEM, and TG-DTA analyses. Additionally, this aminated nanocatalyst was evaluated for the effective synthesis of α,β-unsaturated carbonyl compounds containing valuable substances such as barbituric acid moiety under solvent-free conditions. This catalyst obtained desired products with excellent yields, high purity, and short reaction times. Furthermore, the synthetic, non-toxic heterogeneous nanocatalyst is easily recycled and can be reused several times.

Graphical Abstract

Synthesis and characterization of the aminated nano-zeolite: A green heterogeneous nanocatalyst for the synthesis of valuable organic compounds


  • Synthesis of green heterogeneous nanocatalyst.
  • Functionalization of nano-clinoptilolite.
  • Synthesis of valuable organic compounds.
  • Excellent yields and short reaction times.


Main Subjects

[1] Sathishkumar, M., Nagarajan, S., Shanmugavelan, P., Dinesh, M., & Ponnuswamy, A. (2013). One-pot regio/stereoselective synthesis of 2-iminothiazolidin-4-ones under solvent/scavenger-free conditions. Beilstein J. Org. Chem. 9(1) 689-697.
[2] Manujyothi, R., Aneeja, T., & Anilkumar, G. (2021). Solvent-free synthesis of propargylamines: An overview. RSC Adv. 11, 19433-19449.
[3] Ghezali, S., Mahdad-Benzerdjeb A., Ameri M., & Bouyakoub, A.Z. (2018). Adsorption of 2,4,6-trichlorophenol on bentonite modified with benzyl dimethyltetradecylammonium chloride. Chem. Int. 4(1) 24-32.
[4] Naeimi, H., and Nazifi, Z.S. (2014). Sulfonated diatomite as heterogeneous acidic nanoporous catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j] xanthenes under green conditions. Appl. Catal. A.-Gen. 477, 132-140.
[5]  Sivaguru, P.,  and  Lalitha, A. (2014). Ceric ammonium nitrate supported HY-zeolite: An efficient catalyst for the synthesis of 1,8-dioxooctahydroxanthenes. Chinese Chem. Lett. 25(2) 321-323.
[6] Li, P., Regati, S., Huang, H.C., Arman, H.D., Chen, B.L., & Zhao, J.C.G. (2015). A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chem. Lett. 26(1) 6-10.
[7] Jetti, S. R., Bhatewara, A., Kadre, T., & Jain, S. (2014). Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones / thiones under heterogeneous conditions. Chinese Chem. Lett. 25(3) 469-473.
[8] Kalhor, M., and Zarnegar, Z. (2019). Fe3O4/SO3H@Zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives. RSC Adv. 9, 19333-19347.
[9] Tamiji, T., and Nezamzadeh-Ejhieh, A. (2019). Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode. J. Solid State Electr. 23, 143-157.
[10] Miądlicki, P., Wróblewska, A., Kiełbasa, K., Koren, Z.C., & Michalkiewicz, B. (2021). Sulfuric acid modified clinoptilolite as a solid green catalyst for solvent-free α-pinene isomerization process. Micropor. Mesopor. Mat. 324, 111266-111280.
[11] Markovi, M., Dakovi, A., Rottinghaus, G.E., Kragovi, M., Petkovi, A., Krajišnik, D., Mili, J., Mercurio, M., & Gennaro, B. (2017). Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. Colloid. Surface. B. 151, 324-332. 
[12] Zhao, Y., Zhao, X., Deng, J., & He, C. (2016). Uilization of chitosan–clinoptilolite composite for the removal of radiocobalt from aqueous solution: Kinetics and thermodynamics. J. Radioanal. Nucl. Chem. 308, 701-709.
[13] Yener, H.B., Yılmaz, M., Deliismail, O., Ozkan, S.F., Helvac, S.S. (2017). Clinoptilolite supported rutile TiO2 composites: Synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Sep. Purif. Technol. 173, 17-26.
[14] Baghbanian, S.M. (2015). Propylsulfonic acid functionalized nano-zeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives. Chinese Chem. Lett. 26(9) 1113-1116.
[15] Guzel, P., Aydın, Y.A., & Deveci Aksoy, N. (2016). Removal of chromate from wastewater using amine-based-surfactant-modified clinoptilolite. Int. J. Environ. Sci .Te. 13, 1277-1288.
[16] Elkanzi, N.A.A., Hrichi, H., Alolayan, R.A., Derafa, W., Zahou, F.M., & Bakr, R.B. (2022). Synthesis of chalcones derivatives and their biological activities: A review. ACS Omega, 7(32) 27769-27786. 
[17] Aljohani, G., Al-Sheikh Ali, A., Alraqa, S.Y., Amran, S., & Basar, N. (2021). Synthesis, molecular docking and biochemical analysis of aminoalkylated naphthalene-based chalcones as acetylcholinesterase inhibitors. J. Taibah Univ. Sci. 15(1) 781-797.
[18] Jain, A., and Jain, D. (2019). Synthesis, characterization and biological evaluation of some new heterocyclic derivatives of chalcone as antihyperglycemic agents. Int. J. Pharmceut. Sci. Res. 59, 5700-5706. 
[19] Zangade, S.B., Jadhav, J.D., Vibhute, Y.B., & Dawane, B.S. (2010). Synthesis and antimicrobial activity of some new chalcones and flavones containing substituted naphthalene moiety. J. Chem. Pharm. Res. 2(1) 310-314.
[20] Welday Kahssay, S., Hailu, G.S., & Taye Desta, K. (2021). Design, synthesis, characterization and in vivo antidiabetic activity evaluation of some chalcone derivatives. Drug Des. Dev. Ther. 15, 3119-3129.
[21] Echeverria, C., Santibañez, J.F., Donoso-Tauda, O., Escobar, C.A., & Ramirez-Tagle, R. (2009). Structural antitumoral activity relationships of synthetic chalcones. Int. J. Mol. Sci. 10(1) 221-231. 
[22] Yadav, N., Dixit, S.K., Bhattacharya, A., Mishra, L.C., Sharma, M., Awasthi, S.K., & Bhasin, V.K. (2012). Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem. Biol. Drug Des. 80, 340-347. 
[23] Sharma, N., Mohanakrishnan, D., Sharma, U.K., Kumar, R., Richa, A.K., & Sahal Sinha, D. (2014). Design, economical synthesis and antiplasmodial evaluation of vanillin derived allylated chalcones and their marked synergism with artemisinin against chloroquine resistant strains of Plasmodium falciparum. Eur. J. Med. Chem. 79, 350-368.
[24] Guantai, E.M., Ncokazi, K., Egan, T.J., Gut, J., Rosenthal, P.J., Bhampidipati, R., Kopinathan, A., Smith, P.J., & Chibale, K. (2011). Enone– and chalcone–chloroquinoline hybrid analogues: In silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. J. Med. Chem. 54(10) 3637-3649. 
[25] Housecroft, C.E., & Sharpe, A.G. (2008). Inorganic Chemistry. 3rd ed., Pearson Prentice Hall, NJ, pp. 620-650.
[26] Bano, B., Khan, K.M., Begum, F., Lodhi, M.A., Salar, U., Khalil, R., Ul-Haq, Z., & Perveen, S. (2018). Benzylidine indane-1,3-diones: As novel urease inhibitors; synthesis, in vitro, and in silico studies. Bioorg. Chem. 81, 658-671.
[27] Szymusiak, H., Zielinski, R., Domagalska, B.W., Wilk, K.A. (2000). Electronic structure and nonlinear optical properties of model push-pull polyenes with modified indanone groups: A theoretical investigation. Comput. Chem. 24(3-4) 369-380.
[28] Mitka, K., Kowalski, P., Pawelec, D., & Majka, Z. (2009). Synthesis of novel indane-1,3-dione derivatives and their biological evaluation as anticoagulant agents. Croat. Chem. Acta, 82(3) 613-618.
[29] Zidar, N., and Kikelj, D. (2011). Preparation and reactivity of 5-benzylidenebarbituric and 5-benzylidene-2-thiobarbituric acids. Acta Chim. Slov. 58(1) 151-157.
[30] Ding, S., Yao, B., Schobben, L., & Hong, Y. (2020). Barbituric acid based fluorogens: Synthesis, aggregation-induced emission, and protein fibril detection. Molecules 25(1) 32.
[31] Stojiljkovic, I.N., Rancic, M.P., Marinkovic, A.D., Cvijetic, I.N., Milcic, M.K. (2021). Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronicsystems: Experimental and quantum chemical study. Spectrochim. Acta A, 253, 119576. 
[32] Rabiei, Kh., & Naeimi, H. (2018). Sonocatalyzed total synthesis of N,N-diaryl-formamides through oxidation and hydrolysis reaction of gem-dichloroaziridines using DMSO/H2O. Curr. Org. Synth. 15(7) 1014-1019.
[33] Niyazi, Sh., Pouramiri, B., & Rabiei, Kh. (2022). Functionalized nanoclinoptilote as a novel and green catalyst for the synthesis of Mannich bases derived from 4-hydroxy coumarin. J. Mol. Struct. 1250 (Part B) 131908.
[34] Waghmare, A.S., and Pandit, S.S. (2017). DABCO catalyzed rapid one-pot synthesis of 1,4-dihydropyrano [2,3-c] pyrazole derivatives in aqueous media. J. Saudi Chem. Soc. 21(3) 286-290. 
[35] Hu, Y., Chen, Z.C., & Le, Z.G. (2004), Organic reactions in ionic liquids: Ionic liquid promoted knoevenagel condensation of aromatic aldehydes with (2‐thio)barbituric acid. Synth. Commun. 34(24) 4521-4529.
[36] Shirini, F., Langarudi, M.S.N., & Daneshvar, N. (2017). Preparation of a new DABCO-based ionic liquid [H2-DABCO][H2PO4]2 and its application in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-d]pyrimidinone derivatives. J. Mol. Liq. 234, 268-278. 
[37] Theresa, L.V., Avudaiappan, G., Shaibuna, M., Hiba, K., & Sreekumar, K. (2021). A study on the physical properties of low melting mixtures and their use as catalysts/solvent in the synthesis of barbiturates. J. Heterocycl. Chem. 58(9) 1849-1860. 
[38] Seyyedi, N., Shirini, F., & Langarudi, M.S.N. (2016). DABCO-based ionic liquids: Green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC Adv. 6, 44630-44640. 
[39] Alizadeh, A., Beiranvand, Z., Safaei, Z., Khodaei, M.M., & Repo, E. (2020). Green and fast synthesis of 2-arylidene-indan-1,3-diones using a task-specific ionic liquid. ACS Omega, 5(44) 28632-28636.
[40] Babu, B., Chandrasekaran, J., & Baiprabhakaran, S. (2014). Growth and characterization of hexamethylene tetramine crystals grown from solution. Mater. Sci.-Poland, 32(2) 164-170.
[41] Mirjalili, B.F., Bamoniri, A., & Nezamalhosseini, S.M. (2015). BF3/Nano-γ-Al2O3 Promoted knoevenagel condensation at room temperature. J. Nanostruct. 5(4) 367-373. 
[42] Li, J.T., Dai, H.G., Liu, D., & Li, T.S. (2006). Efficient method for synthesis of the derivatives of 5‐arylidene barbituric acid catalyzed by aminosulfonic acid with grinding. Synth. Commun. 36(6) 789-794. 
[43] Wang, C., Ma, J.J., Zhou, X., Zang, X.H., Wang, Z., Gao, Y.J., & Cui, P.L. (2005). 1‐n‐Butyl‐3‐methylimmidazolium tetrafluoroborate–promoted green synthesis of 5‐arylidene barbituric acids and thiobarbituric acid derivatives. Synth. Commun. 35(21) 2759-2764. 
[44] Rathod, S.B., Gambhire, A.B., Arbad, B.R., & Lande, M.K. (2010). Synthesis, characterization and catalytic activity of Ce1MgxZr1-xO2 (CMZO) solid heterogeneous catalyst for the synthesis of 5-arylidine barbituric acid derivatives. Bull. Korean Chem. Soc. 31(2) 339-343. 
[45] Goli-Jolodar, O., Shirini, F., & Seddighi, M. (2016). Succinimidinium hydrogensulfate ([H-Suc]HSO4) as an efficient ionic liquid catalyst for the synthesis of 5-arylidenepyrimidine-2,4,6(1H,3H,5H)-trione and pyrano-pyrimidinones derivatives. J. Iran. Chem. Soc. 13, 457-463.