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In this study, natural surface-modified nano-clinoptilolite, NCP@SiO3Pr(CH2)6N4, 
was synthesized and fully characterized using various analytical techniques, including 
FT-IR, XRD, SEM, EDS, TEM, and TG-DTA analyses. Additionally, this aminated 
nanocatalyst was evaluated for the effective synthesis of α,β-unsaturated carbonyl 
compounds containing valuable substances such as barbituric acid moiety under solvent-
free conditions. This catalyst obtained desired products with excellent yields, high 
purity, and short reaction times. Furthermore, the synthetic, non-toxic heterogeneous 
nanocatalyst is easily recycled and can be reused several times.

(2a-m) (3a-m) (1)
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1. Introduction 

The development of green and clean transformations 
to synthesize pharmaceutical compounds is a 
challenge facing chemists today [1,2]. Developing 
heterogeneous catalysts using renewable materials, 
non-toxic chemicals, heterogeneous catalysts, and 
solvent-free conditions are fundamental issues 
in the green synthetic strategy. Solid-supported 
heterogeneous catalysts are considered green media 
and have received significant attention in organic 
synthesis. These catalysts have unique advantages, 
including high stability, simple work-up procedures, 
efficiency, reusability, and low toxicity [3-7]. 

Various materials such as clay, silica, zeolite, metal 
oxide, and other mesoporous materials have been 
utilized as solid supports [8,9]. However, with good 
thermal stability and large surface area, natural zeolite 
clinoptilolite has been utilized in various industrial 
and synthetic fields [10]. Moreover, convenient 
surface modification by different chemical reagents 
is a unique advantage of zeolite clinoptilolite [11-
13]. Recently, as heterogeneous catalysts or ideal 
supports for homogeneous catalysts, zeolites have 
been offered as an effective green medium for organic 
reactions [14,15].

Chalcones (α,β-unsaturated Michael acceptors) 
are naturally abundant or synthetic compounds 
with a broad spectrum of pharmaceutical activities, 
including antimalarial [16,17], antihyperglycemic 
[18], antibacterial [19], antidiabetic [20] and 
antitumor [21]. Chalcones, or 1,3-diaryl/heteroaryl-
2-propene-1-ones, are an attractive molecular 
scaffold that have been widely used as starting or 
intermediate material to synthesize various bioactive 
heterocycles [22-24].

On the other hand, barbituric acid and its derivatives 
have recently attracted significant attention because 
of their versatile biological properties, including 
sedatives, hypnotic, cardiovascular, anticonvulsants, 
inhibitors of metal corrosion, etc. [25]. According to 
previous studies, many synthetic drugs bear a barbituric 
acid core. Also, 2-Arylidenindane-1,3-diones are 
an important class of chemicals that have various 
applications in medical science and industrial fields. 
Some of these α,β-unsaturated carbonyl compounds 
show antibacterial, anticoagulant, nonlinear optical, 
and electroluminescent properties [26-28]. Various 

methods using different catalysts have been used to 
synthesize these compounds [29-31].

From the viewpoint of diversity and the importance 
of green chemistry, it is crucial to design and develop 
new and green synthetic methods for constructing α,β-
unsaturated Michael acceptor derivatives.

In our ongoing research on the green synthesis of 
various compounds [32,33], a novel and efficient 
approach for the synthesis of α,β-unsaturated Michael 
acceptor derivatives using an eco-friendly, reusable, 
functionalized nano heterogeneous catalyst was 
developed in this study. 

2. Experimental 

2.1. Materials and apparatus

The desired materials were purchased from the 
Merck company and used without any purification. The 
zeolite was obtained from the Semnan mine. Melting 
points were determined using an Electrothermal MK3 
apparatus. 1H-NMR and 13C-NMR were recorded on 
a Bruker DRX-400 spectrometer in DMSO solvent 
with tetramethylsilane as the internal reference. FT-IR 
spectra were determined using a Perkin-Elmer FT-IR 
550 Spectrometer. A TEM image was obtained using a 
TEM Philips EM 208S instrument. The XRD patterns 
were obtained by an XPertHigh Score (PW1800) 
instrument with 1.54 A. High Score Plus and Digimizer 
software were used to carry out the calculations related 
to the crystallite size and its distribution. The EDS and 
SEM images of nanocatalysts were recorded on an 
FE-SEM MIRA3 TESCA instrument. The TG-DTA 
analysis was recorded for the samples using the STA 
503 model in a 25 - 900 °C range with a temperature 
rise of 10 °C.min-1 under argon atmosphere. Also, the 
purity of the substrates and reaction progress were 
checked by TLC on silica-gel Polygram SILG/UV 
254 plates.

2.2. Preparation of NCP@SiO3PrCl

3-ClPrSi(OMe)3 (1.5 ml) was added to a mixture 
of NCP (A) (1.5 g) in CHCl3 (5 ml) under constant 
stirring (5 h) at room temperature. After the reaction 
was completed, the NCP@SiO3PrCl was separated by 
filtration, washed with CH2Cl2 (2×4 ml), and dried in 
an oven at 80 °C temperature.
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2.3. Preparation of aminated nano-clinoptilolite 
(NCP@SiO3PrN(CH2)6N3)

The synthetic NCP@SiO3PrCl (B) (1 g) was first 
poured into a round bottom flask equipped with a 
magnetic stirrer, and CHCl3 (10 ml) was added to it. 
The mixture was stirred for 15 min at room temperature. 
Then HMTA (1.4 g) was added dropwise to the reaction 
mixture and stirred for 4 h under reflux conditions. 
When we were sure the reaction was completed, the 
mixture was filtered, washed with CH2Cl2 (3×5 ml), 
and dried in an oven under 90 °C [33]. 

2.4. General procedure for the synthesis of α,β-
unsaturated (3a-m) compounds

A mixture of barbituric acid (1 mmol) and aromatic 
aldehyde (1 mmol) was poured into a 25 ml round 
bottom flask, and synthetic NCP@SiO3PrHMTA 
(0.006 g) was added to the mixture and stirred for an 
appropriate time (5-12 min) at 60 °C. The progress of 
the reaction was followed by TLC (EtOAc/Hexane, 
2/10). After the reaction completion (checked by 
TLC), the precipitated solid was washed twice with 

CHCl3 (4 ml) to remove the catalyst, which can be 
used in the subsequent reaction. The filtrate was 
concentrated, and the crude product was finally 
purified by recrystallization from EtOH. The desired 
α,β-unsaturated compounds were obtained with 
excellent yields of 94-98% after short reaction times 
(5-12 min) using the green and basic nanocatalyst 
NCP@SiO3PrHMTA (C) (Fig. 1). The structure of 
synthetic products was identified by spectroscopic 
data, as shown in Table 1.

3. Results and discussion

3.1. Preparation and characterization of functionalized 
aminated nano-zeolite clinoptilolite (NCP@
SiO3Pr(CH2)6N4)

A general pathway for the synthesis of NCP@
SiO3Pr(CH2)6N4 nano-clinoptilolite as a low-cost, 
non-toxic, reusable, heterogeneous nanocatalyst is 
depicted in Fig. 2, in accordance with our previous 
report [33]. In the first step, nano-clinoptilolite was 
obtained from bulk zeolite clinoptilolite through a 
green mechanical method using a ball mill. In the 

Fig. 1. Synthesis of various α,β-unsaturated carbonyl compounds in the presence of an aminated nanocatalyst.

Fig. 2. The simplified schematic representation for the preparation of aminated nano-clinoptilolite (C).

(2a-m) (3a-m) (1)

,,OH 

• OH 3-Cl(CH2hSi(OMeh ·.

CHCl3, rt, 5h

Zeolite Clinoptilolite Nano-Clinoptilolite (A) (B)

CHCl3, reflux, 4h

(B) (NCP@SiO3Pr(CH2)6N4) (C)
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Table 1. The spectroscopic data of products (3a-m).
13C-NMR (100 MHz, DMSO-d6) 

(ẟ, ppm) 
and Anal. Calcd. (CHN)

1H-NMR (400 MHz, DMSO-d6)
(ẟ, ppm)

FT-IR (KBr)
(cm-1)

Product

119.33, 128.27, 132.43, 132.90, 
133.33, 150.44, 154.95, 161.80, 

163.63

7.45-8.09 (m, 5H, Ar), 8.28 (s, 1H, 
CH), 11.24 (s, 1H, NH), 

11.40 (s, 1H, NH)

3455 (br, NH), 3215 (CH, 
sp2), 1746 (C=O), 1570 

(C=C), 1443, 1403 (C=C, Ar)

5-(phenylmethylidene)-1,3-
diazinane-2,4,6-trione (3a)

120.37, 128.29, 128.84,130.12, 
131.94, 132.30, 135.43, 137.51, 
150.94, 153.85, 162.33, 163.97,  

192.91

7.52-7.54 (d, J=8 Hz, 2H, Ar), 8.06-
8.08 (d, J=8 Hz, 2H, Ar), 8.24 (s, 1H, 

CH), 11.27 (s, 1H, NH), 
11.42 (s, 1H, NH)

3435 (br, NH), 3209 (CH, 
sp2), 1738 (C=O), 1570 

(C=C), 1440, 1498 (C=C, Ar)

5-[(4-Chlorophenyl)
methylidene]-1,3-diazinane-
2,4,6-trione (3b)

117.87, 128.86, 129.87, 133.97, 
143.46, 150.21, 154.95, 161.80, 

163.60

2.38 (s, 3H, CH3), 7.29-7.31 (d, J=8Hz, 
2H, Ar), 8.08-8.10 (d, J=8Hz, 2H, Ar), 
8.25 (s, 1H, CH), 11.21 (S, 1H, NH), 

11.35 (s, 1H, NH)

3441 (br,NH), 3038 (CH sp2), 
1726 (C=O), 1655 (C=C), 

1490,1540 (C=C, Ar)

5-[(4-methylphenyl)
methylidene]-1,3-diazinane-
2,4,6-trione (3c)

55.70, 113.95, 115.53, 125.18, 
137.52, 150.23, 155.01, 162.19, 

163.47, 163.94.

3.87 (s, 3H, OCH3), 7.05-7.07 (d, 
J=8Hz, 2H, Ar), 8.25 (s, 1H, CH), 

8.36-8.38 (d, J=8Hz, 2H, Ar), 11.17 (s, 
1H, NH), 11.30 (s, 1H, NH)

3211 (br, NH), 3074 (CH 
sp2), 1741 (C=O), 1550 

(C=C), 1460, 1398 (C=C, Ar)

5-[(4-methoxyphenyl)
methylidene]-1,3-diazinane-
2,4,6-trione  (3d)

122.33, 122.72, 124.30, 130.96, 
132.33, 140.03, 148.08, 150.26, 
151.25, 161.21, 162.71, 192.35

8.01-8.03 (d, J=8Hz, 2H, Ar), 8.24-
8.26 (d, J=8Hz, 2H, Ar), 8.33 (s, 1H, 

CH), 11.33 (s, 1H, NH), 
11.50 (s, 1H, NH)

3429 (br, NH), 3098 (CH 
sp2), 1688 (C=O), 1595 

(C=C), 1516, 1440 (C=C, Ar)

5-[(4-nitrophenyl)
methylidene]-1,3-diazinane-
2,4,6-trione  (3e)

39.16, 39.87, 109.73, 111.38, 
120.20, 139.26, 150.52, 154.34, 

155.96, 162.92, 164.91

3.11 (s, 3H, CH3), 3.37 (s, 3H, CH3), 
6.77-6.79 (d, J=8Hz, 2H, Ar), 8.14 (s, 

1H, CH), 8.40-8.42 (d, J=8Hz, 2H, Ar), 
10.92 (s, 1H,NH), 11.05 (s, 1H, NH)

3445 (br, NH), 3034 (CH 
sp2), 1725 (C=O), 1654 

(C=C), 1494,1445 (C=C, Ar),

5-{[4-(dimethylamino)phenyl]
methylidene}-1,3-diazinane-
2,4,6-trione  (3f)

109.51, 112.27, 121.52, 122.84, 
124.33, 124.74, 128.15, 

128.85,138.45, 143.23, 150.29, 
167.83, 175.73

5.04 (s, 1H, NH), 6.67-7.13 (m, 4H, 
Ar), 10.57 (s, 1H, NH), 

11.19 (s, 1H, NH)

3362 (br,NH), 3099 (CH sp2), 
1712 (C=O), 1650 (C=C), 

1417, 1337 (C=C, Ar)

5-(2-oxo-2,3-dihydro- 
1H-indol-3-ylidene)-1,3-
diazinane-2,4,6-trione (3g)

119.31, 125.63, 129.86, 130.36, 
130.74, 138.48, 141.13, 150.29, 

153.57, 161.24, 163.26;
Anal. Calcd. For C13H12N2O3: C, 
63.93; H, 4.95; N, 11.47, Found: 

C, 64.35; H, 5.05; N, 11.47

2.28 (s, 3H, CH3), 2.31 (s, 3H, CH3), 
7.00-7.03 (d, J=8Hz, 1H, Ar), 7.10 (s, 
1H, Ar), 7.62-7.64 (d, J=8Hz, 1H, Ar), 
8.39 (s, 1H, CH), 11.15 (s, 1H, NH), 

11.37 (s, 1H, NH)

3439 (br, NH), 3086 (CH 
sp2), 1674 (C=O), 1580 

(C=C), 1435, 1383 (C=C, Ar)

5-[(2,4-dimethylphenyl)
methylidene]-1,3-diazinane-
2,4,6-trione (3h)

Anal. Calcd. For C11H7ClN2O3: C, 
52.71; H, 2.82; N, 11.18; Found: 

C, 52.98; H, 2.92; N, 11.18

7.47-8.17 (m, 4H, Ar), 8.24 (s, 1H, 
CH), 11.23 (s, 1H, NH), 

11.44 (s, 1H, NH)

3522 (br, NH), 3035 (CH 
sp2), 1694 (C=O), 1611 

(C=C), 1463, 1404 (C=C, Ar)

5-[(3-chlorophenyl)
methylidene]-1,3-diazinane-
2,4,6-trione (3i)

Anal. Calcd. For C12H10N2O4: C, 
58.54; H, 4.09; N, 11.38, Found: 

C, 58.84; H, 4.19; N, 11.34

3.79 (s, 3H, OCH3), 7.11-7.85 (m, 4H, 
Ar), 8.26 (s, 1H, CH), 11.25 (s, 1H, 

NH), 11.40 (s, 1H, NH)

3240 (br, NH), 3084 (CH 
sp2), 1740 (C=O), 1550 

(C=C), 1450, 1398 (C=C, Ar)

5-[(3-methoxyphenyl)
methylidene]1,3-diazinane-
2,4,6-trione (3j)

123, 126, 127, 128, 129, 133, 135, 
145, 153, 187, 189;

 Anal. Calcd. For C11H7ClN2O3: C, 
52.71; H, 2.82; N, 11.18; Found: 

C, 53.01; H, 2.95; N, 11.19

7.35-7.76 (m, 4H, Ar), 8.29 (s, 1H, 
CH), 11.26 (s, 1H, NH), 

11.48 (s, 1H, NH)

3428 (br, NH), 3080 (CH 
sp2), 1690 (C=O), 1610 

(C=C), 1463, 1404 (C=C, Ar)

5-[(2-chlorophenyl)
methylidene]-1,3-diazinane-
2,4,6-trione (3l)

122, 127, 128, 129, 132, 133, 
1469, 157, 188, 189

7.56-8.24 (m, 4H, Ar), 8.61 (s, 1H, 
CH), 11.25 (s, 1H, NH), 

11.50 (s, 1H, NH)

3237 (br, NH), 3082 (CH 
sp2), 1684 (C=O), 1599 

(C=C), 1517, 1439 (C=C, Ar)

5-[(2-nitrophenyl)
methylidene]-1,3-diazinane-
2,4,6-trione (3m)
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second step, the reaction of nano-clinoptilolite and 
3-chloropropyl trimethoxysilan was investigated for 
the synthesis of the desired functionalized NCP@
SiO3PrCl. In continuation of the NCP modifying 
process, the nano-clinoptilolite NCP (C) was prepared 
through the nucleophilic substituted reaction of the 
Cl atom on the NCP (B) surface, with the nitrogen 
of hexamethylenetetramine (HMTA) under reflux 
conditions [33]. The structure of the synthetic NCP@
SiO3Pr(CH2)6N4 was characterized using various 
analytical techniques such as FT-IR, XRD, FE-SEM, 
EDS, TEM, and TG-DTA analyses (Supplementary 
File).

In FT-IR spectra (Fig. S1), the functional groups' 
existence was confirmed by comparing the FT-IR 
spectra of NCP (A) with NCPs (C). In Fig. S1(a), 
symmetric and asymmetric stretching vibration at 
wave number 3452 cm-1 contributed to the hydrogen 
bonding of the H2O molecules to surface oxygen, 
and the medium intensity band (1640 cm-1) attributed 
to the bending H–О–H vibration. The tetrahedral-
octahedral, (T-O), stretching vibration of the Si–O, 
Si–O–Al, and Al–O bonds appeared at 1077 cm-1. 
The next vibration, at 462 cm-1, is assigned to a T-O 
bending of O–Si–O and O–Al–O [33].

The FT-IR spectra of NCP@SiO3Pr(CH2)6N4 (C) is 
presented in Fig. S1(b). The asymmetric stretching 
vibration of the hydroxyl group linked on the nano-
zeolite clinoptilolite surface appeared as a broad 
band at 3450 cm-1, and the bending H–О–H vibration 
appeared at wave number 1634 cm-1. Also, two bands at 
2873 and 2941 cm-1 were attributed to the C–H group. 
The band at 1237 cm-1 was assigned to the stretching 
vibration of C–N. All of these observations confirmed 
the modification of the nano-clinoptilolite surface.

Using scanning electron microscopy (SEM) and 
transition electron microscopy (TEM), the morphology 
of functionalized nano-clinoptilolite (C) and pure nano-
clinoptilolite (A) was examined (Figs. S2 and S3). 
Additionally, the particle distribution was calculated 
using the NCP (C) SEM image (Fig. S4) 

The X-ray diffraction analyses of nano-clinoptilolites 
(A) and (C) are indicated in Fig. S5. The intense peak 
at 2θ = 26.60° was assigned to d-spacing values of 3.35 
Å. It is clear from the similarities in XRD patterns of 
NCP (A) and (C) that chemical attachment to nano-
clinoptilolite was only affected its surface without 
destroying the NCP's original structure. In Fig. S5, 

the peak at 2θ = 17.95° is related to the existence of 
hexamethylene tetraamine linked on the nano-zeolite 
clinoptilolite surface [40]. The crystallite size of the 
NCP (C) was calculated using the Scherrer Equation 
(see Fig. S6). As shown in this figure, the average 
crystallite size of NCP (C) was 35 nm.

Analysing the NCP with EDX technique, confirmed 
the formation of functionalized nano-clinoptilolite  (C). 
The results of the elemental analysis of NCP (A) and 
NCP (C) are shown in Fig. S7. The existence of C and 
N elements in the EDX analysis (Fig. S7) agrees with 
the NCP@SiO3PrN(CH2)6N3 (C) structure.

Thermal gravimetrical analysis (TGA) was performed 
to characterize the functionalized nano-clinoptilolite 
further. TG analysis of the nano-zeolite clinoptilolite 
(A) and (C) are presented in Fig. S8. As seen in the 
figure, the loading of the desired functional group was 
confirmed by comparing the TGA diagram of modified 
nano-clinoptilolite (C) with the TGA curve of nano-
clinoptilolite (A). The TGA of NCP (C) shows that the 
initial weight loss that occurs up to 200 °C is associated 
with water desorption, the approximate 32 % weight 
loss occurring between 200 to 260 °C corresponds to 
the linked group decomposition, and the 12 % weight 
loss between 260 to 800 °C is related to the observed 
elimination of water. In the DTA diagram of the modified 
NCP (C), an exothermal signal was observed in the 
range of 200 - 260 °C, which agrees with the elimination 
of organic compounds loaded on the nano-clinoptilolite 
surface. Also, it seems that the endothermal signal in 
the range of 260 - 500 °C is related to the elimination 
of water molecules. All of the mentioned figures are 
indicated in the Supplementary File.

To continue the previous investigation of the 
catalytic efficiency of this synthetic aminated nano 
heterogeneous catalyst, the preparation of valuable 
α,β-unsaturated carbonyl compounds was studied in 
the presence of synthesized NCP@SiO3Pr(CH2)6N4.

3.2. Survey of the synthesis of α,β-unsaturated 
carbonyl compounds in the presence of NCP@
SiO3Pr(CH2)6N4 (C)

In continuation of the successful synthesis of novel 
basic functionalized nanoclinoptilolite and survey 
catalytic efficiency for the preparation of  Mannich bases 
[33], we focused our attention on the utility of the novel 
synthetic basic functionalized nano-clinoptilolite for 

https://jpst.irost.ir/jufile?ar_sfile=43855
https://jpst.irost.ir/jufile?ar_sfile=43855
https://jpst.irost.ir/jufile?ar_sfile=43855
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electron-donating and electron-withdrawing groups in 
conjunction with barbituric acid for the synthesis of α,β- 
unsaturated carbonyl compounds (3a-m) under optimal 
conditions. As is observable, by using this novel, 
green and basic nanocatalyst, NCP@SiO3PrN(CH2)6N3 
(C), the aromatic aldehydes containing both electron-
donating and electron-withdrawing groups afforded the 
corresponding products (3a-m) with excellent yields 
and short reaction times (Table 4). The structure of 
the synthetic products was characterized by various 
spectroscopic data. 

3.3. Mechanism of formation for the α,β-
unsaturated carbonyl compounds (3a) using NCP@
SiO3PrN(CH2)6N3 (C)

The proposed mechanism for the preparation of 
α,β-unsaturated carbonyl compounds containing 
valuable barbituric acid moiety in the presence of the 
heterogeneous nanocatalyst (C) is displayed in Fig 4.

3.4. Determination of the synthetic nanocatalyst NCP 
(C) reusability

In accordance with green chemistry rules and the 
importance of the reusability of heterogeneous catalysts, 

the preparation of α,β-unsaturated carbonyl compounds 
including arylidene barbituric acid. For this purpose, 
the condensation reaction of 4-chlorobenzaldehyde 
with barbituric acid was chosen as the model reaction 
(Fig. 3). Due to the optimization of this reaction, the 
influence of various amounts of synthetic nanocatalyst 
NCP@SiO3Pr(CH2)6N4 and different temperatures were 
examined under solvent-free conditions. The results are 
summarized in Tables 2 and 3. 

As seen in Table 2, the desired product (3b) was 
obtained in a good yield when 0.006 g of NCP (C) 
was used (entry 6 in Table 2). There was no product 
observed in the absence of the catalyst.

Table 3 represents the results of our investigation 
of temperature effects. At 60 ºC under solvent-free 
conditions, entry 3 showed excellent yield and short 
reaction time of desired α,β-unsaturated carbonyl 
compound (3b). It is also worth mentioning that 
increasing the temperature up to 140 °C did not affect 
the progress of product yield (Table 3, entry 6).

A general study of this protocol was carried out using 
various aromatic aldehydes and ketones containing 

Fig. 3. Preparation of the compound (3b) in the presence of the aminated NCP under solvent-free conditions.

(1) (2b) (3b)

Aminated NCP
Solvent-free, rt

Table 2. Optimization of catalyst amount for the synthesis of (3b) 
under solvent-free conditions.

Yielda (%)Time (min)Amount of catalyst (g)Entry

No product90-1

35150.0012

45150.0023

60150.0034

75150.0045

90150.0066

90150.0077

90150.0088

90150.0099

90150.0210
a Isolated yield

Table 3. Optimization of temperature effect for preparation of (3b) 
in the presence of NCP (C) (0.006 g) under solvent-free conditions.

Yielda (%)Time (min)Temperature (°C)Entry

9015rt1

9312502

979603

979704

9781005

9761406
a Isolated yield
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the recycling of this synthetically modified nanocatalyst 
was studied in a reaction model to synthesize the 
corresponding product (3a). After the workup of the 
product (3a), the catalyst was washed with CH2Cl2 (6 
ml), dried at 90 °C in an oven for 8 h, and reused in the 
next reaction. The results are summarized in Fig. 5. This 
figure shows that the synthetic nanocatalyst was reused 
in the same response for at least six consecutive runs 
with remarkable activity retention.

In addition, the efficiency of this novel method using 
a heterogeneous nanocatalyst for the preparation of the 
corresponding α,β-unsaturated carbonyl compounds 
(3a-m) was compared with other reported catalytic 
methods. The results are shown in Table 5.

Table 4. Green synthesis of compounds (3a-m) from barbituric acid 
and substrates (2a-m) in the presence of NCP@SiO3PrN(CH2)6N3 
(C) as an efficient nanocatalyst.

Yielda

(%)
Time
(min)

ProductSubstrate
(2)

Entry

95102a1

9792b2

95102c3

97122d4

9852e5

9672f6

9762g7

9482h8

9772i9

9782j10

96102k11

9772l12

9762m13
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Fig. 4. The proposed mechanism for the synthesis of α,β-unsaturated 
carbonyl compounds using modified nano-clinoptilolite (MNCP) 
catalyst.
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Fig. 5. Reusability of the modified nanocatalyst (C).
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Table 5. Comparison of catalytic efficiency of NCP@SiO3PrHMTA 
with other reported methods for the synthesis of compound (3b).

Yield
(%)

Ref.Time 
(min)

Catalyst, ConditionsEntry

84[41]30BF3/nano-γ-Al2O3/Ethanol, RT1

96[42]180Aminosulfonic acid / Grinding2

78[43]120[bmim]BF4 / Grinding-laying3

94[44]3Ce1MgxZr1-xO2 (CMZO) / MW4

94[45]7[H-Suc]HSO45

97This work9NCP@SiO3PrHMTA, 60 oC6

55-90NCP, 60 oC7

4. Conclusion

In conclusion, we have reported the synthesis of 
a green and efficient nano heterogeneous natural 
basic catalyst through the modification of the nano-
zeolite clinoptilolite surface using the reaction of the 
synthetic nano-zeolite clinoptilolite with chlolropropyl 
trimethoxysilan and HMTA reagents. The structure 
of the modified nano-zeolite was characterized using 
various techniques, including FT-IR, XRD, SEM, 
TEM, EDS, and TG-DTA analyses. Then, the catalytic 
activity of this nanocatalyst was studied for the green 
synthesis of α,β-unsaturated carbonyl compounds 
containing barbituric acid moiety (3a-m) under solvent-
free conditions. Using this nanocatalyst resulted in the 
desired products in excellent yields and short reaction 
times by easy workup. The catalyst was reused in at least 
six consecutive runs with remarkable activity retention. 
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