[1] Jodeiri, N., Wu, L., Mmbaga, J., Hayes, R. E., & Wanke, S. E. (2010). Catalytic combustion of VOC in a counter-diffusive reactor. Catal. Today, 155(1-2) 147-153.
[2] Jodeiri, N., Mmbaga, J. P., Wu, L., Wanke, S. E., & Hayes, R. E. (2012). Modeling a counter-diffusive reactor for methane combustion. Comput. Chem. Eng. 39, 47-56.
[3] He, L., Fan, Y., Bellettre, J., Yue, J., & Luo, L. (2020). A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renew. Sust. Energ. Rev. 119, 109589.
[4] Akolkar, A., Rahmatian, N., Unterberger, S. H., Petrasch, J. (2017). Tomography based analysis of conduction anisotropy in fibrous insulation. Int. J. Heat Mass Tran. 108(B) 1740-1749.
[5] Tomadakis, M. M. & Robertson, T. J. (2005). Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater. 39(2) 39-163.
[6] Xu, P., Qiu, S., Cai, J., Li, C., & Liu, H. (2017). A novel analytical solution for gas diffusion in multi-scale fuel cell porous media. J. Power Sources, 362, 73-79.
[7] Maze, B., Tafreshi, H. V., Wang, Q., & Pourdeyhimi, B. (2007). A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J. Aerosol Sci. 38(5) 550-571.
[8] de Vries, E. T., Raoof, A., & van Genuchten, M. T. (2017). Multi-scale modeling of dual-porosity porous media; a computational pore-scale study for flow and solute transport. Adv. Water Resour. 105, 82-95.
[9] Li, Z., Zhang, X., & Liu, Y. (2017). Pore-scale simulation of gas diffusion in unsaturated soil aggregates: Accuracy of the dusty-gas model and the impact of saturation. Geoderma, 303, 196-203.
[10] Di Palma, P. R., Parmigiani, A., Huber, C., Guyennon, N., & Viotti, P. (2017). Pore-scale simulations of concentration tails in heterogeneous porous media. J. Contam. Hydrol. 205, 47-56.
[11] Zhang, R., Min, T., Chen, L., Kang, Q., He, Y. L., & Tao, W. -Q. (2019). Pore-scale and multi-scale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells. Appl. Energ. 253, 113590.
[12] Wang, H., Chen, L., Qu, Z., Yin, Y., Kang, Q., Yu, B., & Tao W. -Q. (2020). Modeling of multi-scale transport phenomena in shale gas production - A critical review. Appl. Energ. 262, 114575.
[13] Banerjee, B., & Paul, D. (2021). Developments and applications of porous medium combustion: A recent review. Energy, 221, 119868.
[14] Ghareghani, A., Ghasemi, K., Siavashi, M., & Mehranfar, S. (2021). Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review. Fuel, 304, 121411.
[15] Yan, Y., Zhang, C., Wu, G., Feng, S., & Yang, Z., (2022). Numerical study on methane/air combustion characteristics in a heat-recirculating micro combustor embedded with porous media. Int. J. Hydrogen Energ. 47(48) 20999-21012.
[16] Wu, Y., Peng, Q., Yang, M., Shan, J., & Yang, W. (2021). Entropy generation analysis of premixed hydrogen-air combustion in a micro combustor with porous medium. Chem. Eng. Process. 168, 108566.
[17] Liu, W., Wen, J., Gong, J., Liu, G., Zhong, C., & Pan, J. (2021). Parametric study of methane catalytic combustion in a micro-channel reactor: Effects of porous washcoat properties. Fuel, 290, 120099.
[18] Hosseinalipour, S.M., Namazi, M., Modarresi, A., & Ghasemi Marzbali, I. (2018). Numerical study and experimental measurement of permeability coefficient in fibrous porous media, considering geometric details for investigating the effect of geometric parameters. Iran. J. Mech. Eng. (ISME), 20(2) 170-189.
[19] Hosseinalipour, S.M., Namazi, M., Modarresi, A., & Ghasemi Marzbali, I. (2017). An algorithm for geometry generation of fibrous porous media with specified properties. National Conference on Advances in Materials, Mechanical and Aerospace Engineering (AMMAE), Tehran, Iran.
[20] Namazi, M., Nayebi, M., Isazadeh, A., Modarresi, A., Marzbali, I. G., & Hosseinalipour, S. M. (2022). Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media. Energy, 238, 121831.
[21] Hosseinalipour, S. M., & Namazi, M. (2022). Study of geometrical characteristics effects on radiation properties in high porosity fibrous porous media using the pore-scale simulation and two-flux model. Therm. Sci. 24(2B) 1299-1310.
[22] Hosseinalipour, S. M., & Namazi, M. (2019). Pore-scale numerical study of flow and conduction heat transfer in fibrous porous media. J. Mech. Sci. Technol. 33(5) 2307-2317.
[23] Hosseinalipour, S. M., Namazi, M., Ghasemi Marzbali, I. & Modarresi, A. (2017). Heat transfer simulation in a micro-scale porous medium with consideration of geometric details. National Conference on Advances in Materials, Mechanical and Aerospace Engineering (AMMAE), Tehran, Iran.
[24] Song, X., Williams, W. R., Schmidt, L. D., & Aris, R. (1991). Bifurcation behavior in homogeneous-heterogeneous combustion: II. Computations for stagnation-point flow. Combust. Flame 84(3-4) 292-311.
[25] ANSYS Inc., "ANSYS Fluent Theory Guide", release 17.1, Ansys Canonsburg, PA, 2017.