[1] S. Naskar, A.K. Chakrabort, Effect of nano materials in geopolymer concrete, Persp. Sci. 8 (2016) 273-275.
[2] J. Davidovits, Properties of geopolymer cements, In Proceedings of the First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, Ukraine, 1994, pp. 131-149.
[3] A. Taffe, C. Maierhofer, Guidelines for NDT methods in Civil Engineering, Federal Institute for Materials Research (BAM), Berlin, Germany, 2003.
[4] A.M. Neville, J.J. Brooks, Concrete Technology, 2nd Ed., Prentice Hall, New York, 2010.
[5] E.N. Kani, A. Allahverdi, Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan, J. Mater. Sci. 44 (2009) 3088-3097.
[6] Y. Lin, H. Changfan, C. Hsiao, Estimation of high performance concrete strength by pulse velocity, J. Chin. Inst. Eng. 20 (1997) 661-668.
[7] Y. Lin, C.-P. Lai, T. Yen, Prediction of ultrasonic pulse velocity (UPV) in concrete, Aci Mater. J. 100 (2003) 21-28.
[8] E.A. Whitehurst, Evaluation of concrete properties from sonic tests, American Concrete Institute Monograph, 2 (1966) 27.
[9] T.R. Naik, V.M. Malhotra, J.S. Popovics, The ultrasonic pulse velocity method, In: Handbook on Nondestructive Testing of Concrete, 2nd Ed., CRC Press, 2003, pp. 8-19.
[10] B.S. Al-Nu’man, B.R. Aziz, S.A. Abdulla, S.E. Khaleel, Compressive strength formula for concrete using ultrasonic pulse velocity, Int. J. Eng. Trends Technol. 26 (2015) 8-13.
[11] P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S. van Deventer, Geopolymer technology: The current state of the art, J. Mater. Sci. 42 (2007) 2917-2933.
[12] Z. Zidi, M. Ltifi, Z. Ben Ayadi, L. El Mir, X. Nóvoa, Effect of nano-ZnO on mechanical and thermal properties of geopolymer, J. Asian Ceram. Soc. 8 (2020) 1-9.
[13] H.M.M. Khater, Physicomechanical properties of nano-silica effect on geopolymer composites, J. Build. Mater. Struct. 3 (2016) 1-14.
[14] P. Deb, P. Nath, P. Sarker, Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature, in S. Yazdani, and A. Singh (ed), The 7th International Structural Engineering and Construction Conference, ISEC-7, Manoa, Honolulu: University of Hawaii, 2013, 571-576.
[15] Y. Tanigawa, K. Baba, H. Mori, Estimation of concrete strength by combined nondestructive testing method, Special Publication, 82 (1984) 57-76.
[16] U. Durak, O. Karahan, B. Uzal, S. İlkentapar, C.D. Atiş, Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer, Struct. Concr. 22 (2021) E352–E367.
[17] J. Davidovits, Global warming impact on the cement and aggregates industries, World Resour. Rev. 6 (1994) 263-278.
[18] H.M. Khater, Effect of nano-silica on microstructure formation of low-cost geopolymer binder, Nanocomposites, 2 (2016) 84-97.
[19] O.A. Naniz, M. Mazloom, Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete, J. Build. Eng. 20 (2018) 400-410.
[20] D. Adak, M. Sarkar, S. Mandal, Effect of nano-silica on strength and durability of fly ash based geopolymer mortar, Constr. Build. Mater. 70 (2014) 453-459.
[21] D. Tarangini, P. Sravana, P. Srinivasa Rao, Effect of nano silica on frost resistance of pervious concrete, Mater. Today-Proc. 51 (2021) 2185-2189.
[22] J. Davidovits, Geopolymer Chemistry and Applications, 4th Ed., Geopolymer Institute, Saint-Quentin, France, 2015.
[23] M. Karimaei, F. Dabbaghi, M. Dehestani, M. Rashidi, Estimating compressive strength of concrete containing untreated coal waste aggregates using ultrasonic pulse velocity, Materials, 14 (2021) 647.