[1] A.C. Hoffmann, L.E. Stein, Gas Cyclones and Swirl Tubes: Principles, Design, and Operation, 2nd ed., Springer Berlin Heidelberg, Germany, 2002.
[2] W. Griffiths, F. Boysan, Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers, J. Aerosol Sci. 27 (1996) 281-304.
[3] S.G. Bogodage, A. Leung, Improvements of the cyclone separator performance by down-comer tubes, J. Hazard. Mater. 311 (2016) 100-114.
[4] S.G. Bogodage, A.Y.T. Leung, CFD simulation of cyclone separators to reduce air pollution, Powder Technol. 286 (2015) 488-506.
[5] C.E. Lapple, Gravity and centrifugal separation, Am. Ind. Hyg. Assoc. Q. 11 (1950) 40-48.
[6] L. Theodore, V.D. Paola, Predicting cyclone efficiency, J. Air Pollut. Cont. Assoc. 30 (1980) 1132-1133.
[7] J. Dirgo, D. Leith, Cyclone collection efficiency: comparison of experimental results with theoretical predictions, Aerosol Sci. Tech. 4 (1985) 401-415.
[8] G. Jolius, L.A. Chuah, C. Thomas, T.S. Yaw, A. Fakhru’l-Razi, Evaluation on empirical models for the prediction of cyclone efficiency, 2006.
[9] W. Barth, Design and layout of the cyclone separator on the basis of new investigations, Brenn. Warme Kraft, 8 (1956) 1-9.
[10] R. Xiang, S. Park, K. Lee, Effects of cone dimension on cyclone performance, J. Aerosol Sci. 32 (2001) 549-561.
[11] D. Leith, L. W., The collection efficiency of cyclone type particle collectors. A new theoretical approach, presented at the AICHE Symposium Series, U.S.A., 1972.
[12] G. Wan, G. Sun, X. Xue, M. Shi, Solids concentration simulation of different size particles in a cyclone separator, Powder Technol. 183 (2008) 94-104.
[13] X. Xue, G. Sun, G. Wan, M. Shi, Numerical simulation of particle concentration in a gas cyclone separator, Petrol. Sci. 4 (2007) 76-83.
[14] H. Mothes, F. Löffler, Bewegung und abscheidung der partikeln im zyklon, Chem-Ing-Tech. 56 (1984) 714-715.
[15] P. Dietz, Collection efficiency of cyclone separators, AIChE J. 27 (1981) 888-892.
[16] C.J. Stairmand, The design and performance of cyclone separators, Trans. Instn. Chem. Eng. 29 (1951) 356-383.
[17] D. Leith, D. Mehta, Cyclone performance and design, Atmos. Environ. (1967), 7 (1973) 527-549.
[18] T. Chan, M. Lippmann, Particle collection efficiencies of air sampling cyclones: an empirical theory, Environ. Sci. Technol. 11 (1977) 377-382.
[19] L. Enliang, W. Yingmin, A new collection theory of cyclone separators, AIChE J. 35 (1989) 666-669.
[20] R. Clift, M. Ghadiri, A.C. Hoffman, A critique of two models for cyclone performance, AIChE J. 37 (1991) 285-289.
[21] P.V. Danckwerts, Continuous flow systems: distribution of residence times, Chem. Eng. Sci. 2 (1953) 1-13.
[22] E. Muschelknautz, V. Greif, Cyclones and other gas-solids separators, in Circulating Fluidized Beds, ed.: Springer, 1997, pp. 181-213.
[23] E. Muschelknautz, Die berechnung von zyklonabscheidern für gase, Chem-Ing-Tech. 44 (1972) 63-71.
[24] A.C. Hoffmann, L.E. Stein, P. Bradshaw, Gas cyclones and swirl tubes: principles, design and operation, Appl. Mech. Rev. 56 (2003) B28-B29.
[25] A. Hoffmannc, A. Van Santen, R. Allen, R. Clift, Effects of geometry and solid loading on the performance of gas cyclones, Powder Technol. 70 (1992) 83-91.
[26] A. Ter Linden, Investigations into cyclone dust collectors, Proceedings of the Institution of Mechanical Engineers, 160 (1949) 233-251.
[27] H. Mothe, F. Loffler, Prediction of Particle Removal in Cyclone Separator, Int. Chem. Eng. 28 (1988) 231-240.
[28] B. Zhao, Development of a new method for evaluating cyclone efficiency, Chem. Eng. Process. 44 (2005) 447-451.
[29] R.L. Salcedo, M.A. Coelho, Turbulent dispersion coefficients in cyclone flow: An empirical approach, Can. J. Chem. Eng. 77 (1999) 609-617.
[30] Zhao, Bingtao, Dongshen Wang, Yaxin Su, Hua-Lin Wang. Gas-particle cyclonic separation dynamics: modeling and characterization, Sep. Purif. Rev. 49 (2020) 112-142.
[31] D. L. Iozia, D. Leith, The logistic function and cyclone fractional efficiency, Aerosol Sci. Technol. 12 (1990) 598-606.
[32] J. Kim, K. Lee, Experimental study of particle collection by small cyclones, Aerosol Sci. Technol. 12 (1990) 1003-1015.
[33] W. Kim, J. Lee, Collection efficiency model based on boundary‐layer characteristics for cyclones, AIChE J. 43 (1997) 2446-2455.
[34] M.B. Ray, A.C. Hoffmann, R.S. Postma, Performance of different analytical methods in evaluating grade efficiency of centrifugal separators, J. Aerosol Sci. 31 (2000) 563-581.
[35] C. Shephered, C. Lapple, Flow pattern and pressure drop in cyclone dust collectors, Ind. Eng. Chem. 31 (1939) 972-984.
[36] C. Stairmand, Pressure drop in cyclone separators, Engineering, 168 (1949) 409-412.
[37] J. Casal, J.M. Martinez-Benet, Better way to calculate cyclone pressure drop, Chem. Eng. 90 (1983) 99-100.
[38] R.M. Alexander, Fundamentals of cyclone design and operation, Proc. Aust. Inst. Mining Met. 152 (1949) 203.
[39] P. Patterson, R. Munz, Gas and particle flow patterns in cyclones at room and elevated temperatures, Can. J. Chem. Eng. 74 (1996) 213-221.
[40] W. Barth, L. Leineweber, Beurteilung und auslegung von zyklonabscheidern, Staub, 24 (1964) 41-55.
[41] P. Meissner, F. Löffler, Zur Berechnung des Strömungsfeldes im Zyklonabscheider, Chem-Ing-Technik. 50 (1978) 471-471.
[42] E. Muschelknautz, K. Brunner, Untersuchungen an zyklonen, Chem-Ing-Technik. 39 (1967) 531-538.
[43] D.L. Iozia, D. Leith, Effect of cyclone dimensions on gas flow pattern and collection efficiency, Aerosol Sci. Technol. 10 (1989) 491-500.
[44] H. Mothes, F. Löffler, Zur Berechnung der Partikelabscheidung in Zyklonen (A model for particle separation in cyclones), Chem. Eng. Process. 18 (1984) 323-331.
[45] S. Obermair, C. Gutschi, J. Woisetschläger, G. Staudinger, Flow pattern and agglomeration in the dust outlet of a gas cyclone investigated by phase doppler anemometry, Powder Technol. 156 (2005) 34-42.
[46] J. Gimbun, T. Chuah, T. S. Choong, A. Fakhru’l-Razi, A CFD study on the prediction of cyclone collection efficiency, Int. J. Comput. Meth. Eng. Sci. Mech. 6 (2005) 161-168.
[47] K.-Y. Kuo, C.-J. Tsai, On the theory of particle cutoff diameter and collection efficiency of cyclones, Aerosol Air Qual. Res. 1 (2001) 47-56.
[48] A. Gil, L. M. Romeo, C. Cortes, Effect of the solid loading on a PFBC cyclone with pneumatic extraction of solids, Chem. Eng. Technol. 25 (2002) 407-415.
[49] F.L.S. Fassani, L. Goldstein Jr, A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency Powder Technol. 107 (2000) 60-65.
[50] S. Kang, T. Kwon, S. D. Kim, Hydrodynamic characteristics of cyclone reactors, Powder Technol. 58 (1989) 211-220.
[51] S. Yuu, T. Jotaki, Y. Tomita, K. Yoshida, The reduction of pressure drop due to dust loading in a conventional cyclone, Chem. Eng. Sci. 33 (1978) 1573-1580.
[52] J. Derksen, S. Sundaresan, H. Van Den Akker, Simulation of mass-loading effects in gas-solid cyclone separators, Powder Technol. 163 (2006) 59-68.
[53] F. Qian, Z. Huang, G. Chen, M. Zhang, Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations, Comput. Chem. Eng. 31 (2007) 1111-1122.