Cyclone separator theories to predict performance and flow characteristics

Document Type : Review article


1 Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka

2 Caritas Institute of Higher Education, Hong Kong SAR, China


Several theoretical approaches for predicting performance parameters (collection efficiency, pressure drop, and velocities) of cyclone separators have been developed due to their extensive use in particle handling industries. Expensive and time-consuming experiments to analyze the swirling flow inside the cyclone separators could be avoided with reliable theoretical approaches. However, there are only a limited number of cyclone theory evaluations in the literature. This study investigated the accuracy of cyclone theories by comparing experimental and numerical data at a particle loading rate of 1.0 g.m-3 operating at 5 and 10 m.s-1. General agreements between the theories were revealed by Muschelknautz’s theory for collection efficiency and Shepherd and Lapple’s theory for pressure variations at low solid loading conditions; disagreements were found to be due to the theories’ insensitivity to influences from the particle phase and the frictional wall effect inside cyclone separators. 

Graphical Abstract

Cyclone separator theories to predict performance and flow characteristics


  • Practical analyses to evaluate cyclone designs are cost and time exclusive.
  • Limited literature is available to analyse the cyclone performance theoretically.
  • Selected theories were studied based on the data from the literature.
  • Theories by Muschelknautz and Shepherd and Lapple were partially compatible.
  • Particle-particle-wall interactions and frictions should be analysed further to bring the theories real. 


[1] A.C. Hoffmann, L.E. Stein, Gas Cyclones and Swirl Tubes: Principles, Design, and Operation, 2nd ed., Springer Berlin Heidelberg, Germany, 2002.
[2] W. Griffiths, F. Boysan, Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers, J. Aerosol Sci. 27 (1996) 281-304.
[3] S.G. Bogodage, A. Leung, Improvements of the cyclone separator performance by down-comer tubes, J. Hazard. Mater. 311 (2016) 100-114.
[4] S.G. Bogodage, A.Y.T. Leung, CFD simulation of cyclone separators to reduce air pollution, Powder Technol. 286 (2015) 488-506.
[5] C.E. Lapple, Gravity and centrifugal separation, Am. Ind. Hyg. Assoc. Q. 11 (1950) 40-48.
[6] L. Theodore, V.D. Paola, Predicting cyclone efficiency, J. Air Pollut. Cont. Assoc. 30 (1980) 1132-1133.
[7] J. Dirgo, D. Leith, Cyclone collection efficiency: comparison of experimental results with theoretical predictions, Aerosol Sci. Tech. 4 (1985) 401-415.
[8] G. Jolius, L.A. Chuah, C. Thomas, T.S. Yaw, A. Fakhru’l-Razi, Evaluation on empirical models for the prediction of cyclone efficiency, 2006.
[9] W. Barth, Design and layout of the cyclone separator on the basis of new investigations, Brenn. Warme Kraft, 8 (1956) 1-9.
[10] R. Xiang, S. Park, K. Lee, Effects of cone dimension on cyclone performance, J. Aerosol Sci. 32 (2001) 549-561.
[11] D. Leith, L. W., The collection efficiency of cyclone type particle collectors. A new theoretical approach, presented at the AICHE Symposium Series, U.S.A., 1972.
[12] G. Wan, G. Sun, X. Xue, M. Shi, Solids concentration simulation of different size particles in a cyclone separator, Powder Technol. 183 (2008) 94-104.
[13] X. Xue, G. Sun, G. Wan, M. Shi, Numerical simulation of particle concentration in a gas cyclone separator, Petrol. Sci. 4 (2007) 76-83.
[14] H. Mothes, F. Löffler, Bewegung und abscheidung der partikeln im zyklon, Chem-Ing-Tech. 56 (1984) 714-715.
[15] P. Dietz, Collection efficiency of cyclone separators, AIChE J. 27 (1981) 888-892.
[16] C.J. Stairmand, The design and performance of cyclone separators, Trans. Instn. Chem. Eng. 29 (1951) 356-383.
[17] D. Leith, D. Mehta, Cyclone performance and design, Atmos. Environ. (1967), 7 (1973) 527-549.
[18] T. Chan, M. Lippmann, Particle collection efficiencies of air sampling cyclones: an empirical theory, Environ. Sci. Technol. 11 (1977) 377-382.
[19] L. Enliang, W. Yingmin, A new collection theory of cyclone separators, AIChE J. 35 (1989) 666-669.
[20] R. Clift, M. Ghadiri, A.C. Hoffman, A critique of two models for cyclone performance, AIChE J. 37 (1991) 285-289.
[21] P.V. Danckwerts, Continuous flow systems: distribution of residence times, Chem. Eng. Sci. 2 (1953) 1-13.
[22] E. Muschelknautz, V. Greif, Cyclones and other gas-solids separators, in Circulating Fluidized Beds, ed.: Springer, 1997, pp. 181-213.
[23] E. Muschelknautz, Die berechnung von zyklonabscheidern für gase, Chem-Ing-Tech. 44 (1972) 63-71.
[24] A.C. Hoffmann, L.E. Stein, P. Bradshaw, Gas cyclones and swirl tubes: principles, design and operation, Appl. Mech. Rev. 56 (2003) B28-B29.
[25] A. Hoffmannc, A. Van Santen, R. Allen, R. Clift, Effects of geometry and solid loading on the performance of gas cyclones, Powder Technol. 70 (1992) 83-91.
[26] A. Ter Linden, Investigations into cyclone dust collectors, Proceedings of the Institution of Mechanical Engineers, 160 (1949) 233-251.
[27] H. Mothe, F. Loffler, Prediction of Particle Removal in Cyclone Separator, Int. Chem. Eng. 28 (1988) 231-240.
[28] B. Zhao, Development of a new method for evaluating cyclone efficiency, Chem. Eng. Process. 44 (2005) 447-451.
[29] R.L. Salcedo, M.A. Coelho, Turbulent dispersion coefficients in cyclone flow: An empirical approach, Can. J. Chem. Eng. 77 (1999) 609-617.
[30] Zhao, Bingtao, Dongshen Wang, Yaxin Su, Hua-Lin Wang. Gas-particle cyclonic separation dynamics: modeling and characterization, Sep. Purif. Rev. 49 (2020) 112-142.
[31] D. L. Iozia, D. Leith, The logistic function and cyclone fractional efficiency, Aerosol Sci. Technol. 12 (1990) 598-606.
[32] J. Kim, K. Lee, Experimental study of particle collection by small cyclones, Aerosol Sci. Technol. 12 (1990) 1003-1015.
[33] W. Kim, J. Lee, Collection efficiency model based on boundary‐layer characteristics for cyclones, AIChE J. 43 (1997) 2446-2455.
[34] M.B. Ray, A.C. Hoffmann, R.S. Postma, Performance of different analytical methods in evaluating grade efficiency of centrifugal separators, J. Aerosol Sci. 31 (2000) 563-581.
[35] C. Shephered, C. Lapple, Flow pattern and pressure drop in cyclone dust collectors, Ind. Eng. Chem. 31 (1939) 972-984.
[36] C. Stairmand, Pressure drop in cyclone separators, Engineering, 168 (1949) 409-412.
[37] J. Casal, J.M. Martinez-Benet, Better way to calculate cyclone pressure drop, Chem. Eng. 90 (1983) 99-100.
[38] R.M. Alexander, Fundamentals of cyclone design and operation, Proc. Aust. Inst. Mining Met. 152 (1949) 203.
[39] P. Patterson, R. Munz, Gas and particle flow patterns in cyclones at room and elevated temperatures, Can. J. Chem. Eng. 74 (1996) 213-221.
[40] W. Barth, L. Leineweber, Beurteilung und auslegung von zyklonabscheidern, Staub, 24 (1964) 41-55.
[41] P. Meissner, F. Löffler, Zur Berechnung des Strömungsfeldes im Zyklonabscheider, Chem-Ing-Technik. 50 (1978) 471-471.
[42] E. Muschelknautz, K. Brunner, Untersuchungen an zyklonen, Chem-Ing-Technik. 39 (1967) 531-538.
[43] D.L. Iozia, D. Leith, Effect of cyclone dimensions on gas flow pattern and collection efficiency, Aerosol Sci. Technol. 10 (1989) 491-500.
[44] H. Mothes, F. Löffler, Zur Berechnung der Partikelabscheidung in Zyklonen (A model for particle separation in cyclones), Chem. Eng. Process. 18 (1984) 323-331.
[45] S. Obermair, C. Gutschi, J. Woisetschläger, G. Staudinger, Flow pattern and agglomeration in the dust outlet of a gas cyclone investigated by phase doppler anemometry, Powder Technol. 156 (2005) 34-42.
[46] J. Gimbun, T. Chuah, T. S. Choong, A. Fakhru’l-Razi, A CFD study on the prediction of cyclone collection efficiency, Int. J. Comput. Meth. Eng. Sci. Mech. 6 (2005) 161-168.
[47] K.-Y. Kuo, C.-J. Tsai, On the theory of particle cutoff diameter and collection efficiency of cyclones, Aerosol Air Qual. Res. 1 (2001) 47-56.
[48] A. Gil, L. M. Romeo, C. Cortes, Effect of the solid loading on a PFBC cyclone with pneumatic extraction of solids, Chem. Eng. Technol. 25 (2002) 407-415.
[49] F.L.S. Fassani, L. Goldstein Jr, A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency Powder Technol. 107 (2000) 60-65.
[50] S. Kang, T. Kwon, S. D. Kim, Hydrodynamic characteristics of cyclone reactors, Powder Technol. 58 (1989) 211-220.
[51] S. Yuu, T. Jotaki, Y. Tomita, K. Yoshida, The reduction of pressure drop due to dust loading in a conventional cyclone, Chem. Eng. Sci. 33 (1978) 1573-1580.
[52] J. Derksen, S. Sundaresan, H. Van Den Akker, Simulation of mass-loading effects in gas-solid cyclone separators, Powder Technol. 163 (2006) 59-68.
[53] F. Qian, Z. Huang, G. Chen, M. Zhang, Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations, Comput. Chem. Eng. 31 (2007) 1111-1122.
Volume 7, Issue 2
October 2021
Pages 83-98
  • Receive Date: 17 April 2022
  • Revise Date: 02 June 2022
  • Accept Date: 02 June 2022
  • First Publish Date: 02 June 2022