[1] A.K. Sethi, V.K. Dwivedi, Exergy analysis of double slope active solar still under forced circulation mode, Desalin. Water Treat. 51 (2013) 7394-7400.
[2] O.M.L. Alharbi, A.A. Basheer, R.A. Khattab, I. Ali, Health and environmental effects of persistent organic pollutants, J. Mol. Liq. 263 (2018) 442-453.
[3] S. Yang, Y. Zhao, R. Chen, C. Feng, Z. Zhang, Z. Lei, et al., A novel tablet porous material developed as adsorbent for phosphate removal and recycling, J. Colloid Interf. Sci. J. 396 (2013) 197-204.
[4] Y. Huang, C. Song, L. Li, Y. Zhou, The mechanism and performance of zeolites for ammonia removal in the zeolite packed electrolysis reactor, Electrochemistry, 82 (2014) 557-560.
[5] T.C. Daniel, A.N. Sharpley, J.L. Lemunyon, Agricultural phosphorus and eutrophication: A symposium overview, J. Environ. Qual. 27 (1998) 251-257.
[6] M. El Wali, S.R. Golroudbary, A. Kraslawski, Impact of recycling improvement on the life cycle of phosphorus, Chin. J. Chem. Eng. 27 (2019) 1219-1229.
[7] R. Li, J.J. Wang, B. Zhou, M.K. Awasthi, A. Ali, Z. Zhang, et al., Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute, Bioresource Technol. 215 (2016) 209-214.
[8] D.W. Schindler, The dilemma of controlling cultural eutrophication of lakes, P. Roy. Soc. B-Biol. Sci. 279 (2012) 4322-4333.
[9] P.H. Hsu, Precipitation of phosphate from solution using aluminum salt, Water Res. 9 (1975) 1155-1161.
[10] H.S. Altundoğan, F. Tümen, Removal of phosphates from aqueous solutions by using bauxite. I: Effect of pH on the adsorption of various phosphates, J. Chem. Technol. Biot. 77 (2002) 77-85.
[11] Y. Chen, Y.-S. Chen, Q. Xu, Q. Zhou, G. Gu, Comparison between acclimated and unacclimated biomass affecting anaerobic–aerobic transformations in the biological removal of phosphorus, Process Biochem. 40 (2005) 723-732.
[12] D. Mulkerrins, A.D.W. Dobson, E. Colleran, Parameters affecting biological phosphate removal from wastewaters, Environ. Int. 30 (2004) 249-259.
[13] Y. Li, C. Liu, Z. Luan, X. Peng, C. Zhu, Z. Chen, et al., Phosphate removal from aqueous solutions using raw and activated red mud and fly ash, J. Hazard. Mater. 137 (2006) 374-383.
[14] I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc. 1 (2006) 2661-2667.
[15] S. Salehi, S. Mandegarzad, M. Anbia, Preparation and characterization of metal organic framework-derived nanoporous carbons for highly efficient removal of vanadium from aqueous solution, J. Alloy. Compd. 812 (2020) 152051.
[16] Z. Jin, X. Wang, X. Cui, Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions, Colloid. Surface. A, 316 (2008) 27-36.
[17] T. Sonoda, T. Maruo, Y. Yamasaki, N. Tsunoji, Y. Takamitsu, M. Sadakane, et al., Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3, J. Mater. Chem. A, 3 (2015) 857-865.
[18] T. Sano, S. Wakabayashi, Y. Oumi, T. Uozumi, Synthesis of large mordenite crystals in the presence of aliphatic alcohol, Micropor. Mesopor. Mater. 46 (2001) 67-74.
[19] T.C. Keller, S. Isabettini, D. Verboekend, E.G. Rodrigues, J. Pérez-Ramírez, Hierarchical high-silica zeolites as superior base catalysts, Chem. Sci. 5 (2014) 677-684.
[20] Y.-P. Zhao, T.-Y. Gao, S.-Y. Jiang, D.-W. Cao, Ammonium removal by modified zeolite from municipal wastewater, J. Environ. Sci.-China, 16 (2004) 1001-1004.
[21] Y. Watanabe, H. Yamada, J. Tanaka, Y. Moriyoshi, Hydrothermal modification of natural zeolites to improve uptake of ammonium ions, J. Chem. Technol. Biot. 80 (2005) 376-380.
[22] Z. Liang, J. Ni, Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process, J. Hazard. Mater. 166 (2009) 52-60.
[23] L. Lei, X. Li, X. Zhang, Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite, Sep. Purif. Technol. 58 (2008) 359-366.
[24] A.W. Chester, E.G. Derouane, Zeolite characterization and catalysis, Springer, 2009.
[25] P. Benito, F.M. Labajos, J. Rocha, V. Rives, Influence of microwave radiation on the textural properties of layered double hydroxides, Micropor. Mesopor. Mater. 94 (2006) 148-158.
[26] J.A. Rivera, G. Fetter, P. Bosch, Microwave power effect on hydrotalcite synthesis, Micropor. Mesopor. Mater. 89 (2006) 306-314.
[27] O. Bergadà, I. Vicente, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, Microwave effect during aging on the porosity and basic properties of hydrotalcites, Micropor. Mesopor. Mater. 101 (2007) 363-373.
[28] I. Vicente, P. Salagre, Y. Cesteros, F. Guirado, F. Medina, J.E. Sueiras, Fast microwave synthesis of hectorite, Appl. Clay Sci. 43 (2009) 103-107.
[29] R.M. Barrer, 435. Syntheses and reactions of mordenite, J. Chem. Soc. (1948) 2158-2163.
[30] J. Behin, H. Kazemian, S. Rohani, Sonochemical synthesis of zeolite NaP from clinoptilolite, Ultrason. Sonochem. 28 (2016) 400-408.
[31] F. Yazdi, M. Anbia, S. Salehi, Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media, Int. J. Biol. Macromol. 130 (2019) 545-555.
[32] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution, J. Ind. Eng. Chem. 26 (2015) 315-321.
[33] Y. Dong, Y. Xue, W. Gu, Z. Yang, G. Xu, MnO2 nanowires/CNTs composites as efficient non-precious metal catalyst for oxygen reduction reaction, J. Electroanal. Chem. 837 (2019) 55-59.
[34] Y. Wang, Y. Kmiya, T. Okuhara, Removal of low-concentration ammonia in water by ion-exchange using Na-mordenite, Water Res. 41 (2007) 269-276.
[35] S. Salehi, M. Hosseinifard, Highly efficient removal of phosphate by lanthanum modified nanochitosan-hierarchical ZSM-5 zeolite nano-composite: characteristics and mechanism, Cellulose, 27 (2020) 4637-4664.
[36] D. Bhardwaj, M. Sharma, P. Sharma, R. Tomar, Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer, J. Hazard. Mater. 227-228 (2012) 292-300.
[37] T.-H. Pham, K.-M. Lee, M.S. Kim, J. Seo, C. Lee, La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate, Micropor. Mesopor. Mater. 279 (2019) 37-44.
[38] M. Zhang, H. Zhang, D. Xu, L. Han, J. Zhang, L. Zhang, et al., Removal of phosphate from aqueous solution using zeolite synthesized from fly ash by alkaline fusion followed by hydrothermal treatment, Sep. Sci. Technol. 46 (2011) 2260-2274.
[39] R.F. Spalding, M.E. Exner, Occurrence of Nitrate in Groundwater - A review, J. Environ. Qual. 22 (1993) 392-402.
[40] D.S. Powlson, T.M. Addiscott, N. Benjamin, K.G. Cassman, T.M. de Kok, H. van Grinsven, et al., When Does Nitrate Become a Risk for Humans?, J. Environ. Qual. 37 (2008) 291-297.
[41] L. Knobeloch, B. Salna, A. Hogan, J. Postle, H. Anderson, Blue babies and nitrate-contaminated well water, Environ. Health Persp. 108 (2000) 675-678.
[42] K. Wu, Y. Li, T. Liu, N. Zhang, M. Wang, S. Yang, et al., Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite, Environ. Sci. Pollut. R. 26 (2019) 17632-17643.
[43] J.-R. Li, F.-K. Wang, H. Xiao, L. Xu, M.-L. Fu, Layered chalcogenide modified by Lanthanum, calcium and magnesium for the removal of phosphate from water, Colloid. Surface. A, 560 (2019) 306-314.
[44] K.-W. Jung, K.-H. Ahn, Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method, Bioresource Technol. 200 (2016) 1029-1032.
[45] J.-R. Li, L. Zhu, J. Tang, K. Qin, G. Li, T. Wang, Sequestration of naturally abundant seawater calcium and magnesium to enhance the adsorption capacity of bentonite toward environmental phosphate, Rsc Adv. 6 (2016) 23252-23259.
[46] V. Kuroki, G.E. Bosco, P.S. Fadini, A.A. Mozeto, A.R. Cestari, W.A. Carvalho, Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media, J. Hazard. Mater. 274 (2014) 124-131.
[47] H. Li, J. Ru, W. Yin, X. Liu, J. Wang, W. Zhang, Removal of phosphate from polluted water by lanthanum doped vesuvianite, J. Hazard. Mater. 168 (2009) 326-330.
[48] Y. He, H. Lin, Y. Dong, Q. Liu, L. Wang, Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite, Chemosphere, 164 (2016) 387-395.
[49] Y. He, H. Lin, Y. Dong, L. Wang, Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism, Appl. Surf. Sci. 426 (2017) 995-1004.