[1] Sh. Beibei, Q. Pengfei, J. Meiling, D. Yuchen, L. Feng, H. Zhang et al., Exotic physical properties of 2D materials modulated modulated by moiré superlattices, Mater. Adv. 2 (2021) 5542-5559.
[2] M.N. Brunetti, O.L. Berman, R.Y. Kezerashvili, Optical properties of anisotropic excitons in phosphorene, Phys. Rev. B, 100 (2019) 155433.
[3] A. Jahanshir, Mesonic hydrogen mass spectrum in the oscillator representation, J. Theo. Appl. Phys. 3 (2010) 1-4.
[4] S. Latini, T. Olsen, K.S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screening, Phys. Rev. B, 92 (2015) 245123.
[5] K.S. Thygesen, Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures, 2D Mater. 4 (2017) 022004.
[6] A. Hichri, Ben-A, Imen, S. Ayari, S. Jaziri, Exciton center-of-mass localization and dielectric environment effect in monolayer WS2, J. Appl. Phys. 121 (2017) 235702.
[7] I. Geru, D. Stuer, Excitons and Biexcitons in Semiconductors, In: Resonance Effects of Excitons and Electrons, Lecture Notes in Physics, vol. 869, Springer, Berlin, Heidelberg, 2013.
[8] A. Jahanshir, Quanto-optical effects of exciton-polariton system, Am. J. Optic. Photon. 3 (2015) 89-93.
[9] W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics, 3rd ed., Springer, Berlin, Heidelberg, 2007.
[10] M. Dineykhan, G.V. Efimov, G. Ganbold, S.N. Nedelko, Oscillator Representation in Quantum Physics, Lecture Notes in Physics Monographs, vol. 26, Berlin, Springer-Verlag, 1995.
[11] J. Avery, Spherical Harmonics: Applications in Quantum Theory, Kluwer, Dordrecht, 1989.
[12] H. Bateman, A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York, 1953.
[13] H. Liang, J. Meng, S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570 (2015) 1-10.
[14] M. Fujiwara, T. Shima, Electromagnetic interactions in nuclear and hadron physics, Proceedings of the International Symposium, World Scientific Publishing, USA, 2002.
[15] A. Jahanshir, Quanto-relativistic background of strong electron-electron interactions in quantum dots under the magnetic field, J. Optoelect. Nanostruct. 6 (2021) 1-24.
[16] A. Jahanshir, Relativistic modification of the exciton’s mass in monolayer TMDCs materials, J. Adv. Mater. Process. 8 (2020) 45-54.
[17] M. Richard, J. Kasprzak, A. Baas, S. Kundermann, K. Lagoudakis, M. Wouters et al., Exciton-polariton Bose–Einstein condensation, advances and issues, Int. J. Nanotechnol. 7 (2010) 668-683.
[18] M. Baranowski, P. Plochocka, R. Su, L. Legrand, F. Bernardot et al., Exciton binding energy and effective mass of CsPbCl3: a magneto-optical study, Photon. Res. 8 (2020) A50-A55.
[19] A.J. Chaves, R.M. Ribeiro, T. Frederico, Excitonic effects in the optical properties of 2D materials: An equation of motion approach, J. 2D Mater. 4 (2017) 025086.
[20] A. Molina-Sánchez, Excitonic states in semiconducting two-dimensional perovskites, ACS Appl. Energy Mater. 1 (2018) 6361-6367.
[21] L. Matthes, O. Pulci, F. Bechstedt, Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene, J. Phys.-Condens. Mat. 25 (2013) 395305.
[22] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti M. Fanciulli, M. Dubey et al., Silice field effect transistors operating at room temperature, Nat. Nanotechnol. 10 (2015) 227-232.
[23] D. Jirovec, Dynamics of hole singlet-triplet qubits with large g-factor differences, Phys. Rev. Lett. 128 (2022) 126803.
[24] G. Scappucci, C. Kloeffel, F.A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, et al.,The germanium quantum information route, Nat. Rev. Mater. 6 (2021) 926-943.
[25] D. Loss, D.P. Di Vincenzo, Quantum computation with quantum dots, Phys. Rev. A, 57 (1998) 120-126.
[26] M. Wagner, U. Merkt, A.V. Chaplik, Spin-singlet–spin-triplet oscillations in quantum dots, Phys. Rev. B, 45 (1992) 1951-1954.