[1] N. De Jong, R. Cornet, C.T. Lancee, Higher harmonics of vibrating gas-filled microspheres, Part one: simulations, Ultrasonics, 32 (1994) 447-453.
[2] C.C. Church, The effects of an elastic solid surface layer on the radial pulsations of gas bubbles, J. Acoust. Soc. Am. 97 (1995) 1510-1521.
[3] N. De Jong, L. Hoff, Ultrasound scattering properties of Albunex microspheres, Ultrasonics 31 (1993) 175-181.
[4] S.M. Van der Meer, B. Dollet, M.M. Voormolen, C.T. Chin, A. Bouakaz, N. De Jong, et al., Microbubble spectroscopy of ultrasound contrast agents, J. Acoust. Soc. Am. 121 (2007) 648-656.
[5] L. Hoff, P.C. Sontum, J.M. Hovem, Oscillations of polymeric microbubbles: Effect of the encapsulating shell, J. Acoust. Soc. Am. 107 (2000) 2272-2280.
[6] D. Chatterjee, K. Sarkar, A Newtonian rheological model for the interface of microbubble contrast agents, Ultrasound Med. Biol. 29 (2003) 1749-1757.
[7] P.M. Shankar, P.D. Krishna, V.L. Newhouse, Subharmonic backscattering from ultrasound contrast agents, J. Acoust. Soc. Am. 106 (1999) 2104-2110.
[8] K. Sarkar, W.T. Shi, D. Chatterjee, F. Forsberg, Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation, J. Acoust. Soc. Am. 118 (2005) 539-550.
[9] P. Marmottant, S. van der Meer, M. Emmer, M. Versluis, N. De Jong, S. Hilgenfeldt, D. Lohse, A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture, J. Acoust. Soc. Am. 118 (2005) 3499-3505.
[10] M. Emmer, A. Van Wamel, D.E. Goertz, N. De Jong, The onset of microbubble vibration, Ultrasound Med. Biol. 33 (2007) 941-949.
[11] N. De Jong, M.C. Emmer, T. Chin, A. Bouakaz, F. Mastik, D. Lohse, Compression-only behavior of phospholipid-coated contrast bubbles, Ultrasound Med. Biol. 33 (2007) 653-656.
[12] J. Tu, J. Guan, Y. Qiu, T.J. Matula, Estimating the shell parameters of SonoVue® microbubbles using light scattering, J. Acoust. Soc. Am. 12 (2009) 2954-2962.
[13] A.A. Doinikov, J.F. Haac, P.A. Dayton, Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles, Ultrasonics 49 (2009) 269-275.
[14] S. Paul, R. Nahire, S. Mallik, K. Sarkar, Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery, Comput. Mech. 53 (2014) 413-435.
[15] S. Paul, A. Katiyar, K. Sarkar, K.D. Chatterjee, W.T. Shi, F. Forsberg, Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model, J. Acoust. Soc. Am. 127 (2010) 3846-3857.
[16] M. Overvelde, V. Garbin, J. Sijl, B. Dollet, N. De Jong, D. Lohse, M. Versluis, Nonlinear shell behavior of phospholipid-coated microbubbles, Ultrasound Med. Biol. 36 (2010) 2080-2092.
[17] B. Helfield, X. Chen, B. Qin, F.S. Villanueva, Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity, J. Acoust. Soc. Am. 139 (2016) 204-214.
[18] F. Forsberg, W.T. Shi, B.B. Goldberg, Subharmonic imaging of contrast agents, Ultrasonics, 38 (2000) 93-98.
[19] F. Forsberg, J.B. Liu, W.T. Shi, J. Furuse, M. Shimizu, B. Barry, In vivo pressure estimation using subharmonic contrast microbubble signals: Proof of concept, IEEE T. Ultrason. Ferr. 52 (2005) 581-583.
[20] P.M. Shankar, P.D. Krishna, V.L. Newhouse, Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement, Ultrasound Med. Biol. 24 (1998) 395-399.
[21] D. Adam, M. Sapunar, E. Burla, On the relationship between encapsulated ultrasound contrast agent and pressure, Ultrasound Med. Biol. 31 (2005) 673-686.
[22] K.S. Andersen, J.A. Jørgen, Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent, Ultrasonics, 50 (2010) 294-299.
[23] A. Katiyar, K. Sarkar, F. Forsberg, Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure, J. Acoust. Soc. Am. 129 (2011) 2325-2335.
[24] L.M. Leodore, F. Forsberg, W.T. Shi, P5B-6 in-vitro pressure estimation obtained from subharmonic contrast microbubble signals, Proc. IEEE Ultrason. Symp. (IUS) (2007) 2207-2210.
[25] W.T. Shi, F. Forsberg, J.S. Raichlen, L. Needleman B.B. Goldberg, Pressure dependence of subharmonic signals from contrast microbubbles, Ultrasound Med. Biol. 25 (1999) 275-283.
[26] N. Mobadersany, A. Katiyar, K. Sarkar, Effects of ambient pressure on the subharmonic response from encapsulated microbubbles, arXiv preprint arXiv: 1507.04829 (2015).
[27] D. Chatterjee, P. Jain, K. Sarkar, Ultrasound-mediated destruction of contrast microbubbles used for medical imaging and drug delivery, Phys. Fluids, 17 (2005) 100603.
[28] A. Katiyar, K. Sarkar, Excitation threshold for subharmonic generation from contrast microbubbles, J. Acoust. Soc. Am. 130 (2011) 3137-3147.
[29] A. Katiyar, K. Sarkar, F. Forsberg, Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure, J. Acoust. Soc. Am. 129 (2011) 2325-2335.
[30] A.Y. Ammi, R.O. Cleveland, J. Mamou, G.I. Wang, S.L. Bridal,W.D. O’Brien, Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals, IEEE T. Ultrason. Ferr. 53 (2006) 126-136.
[31] J.E. Chomas, P. Dayton, J. Allen, K. Morgan, K.W. Ferrara, Mechanisms of contrast agent destruction, IEEE T. Ultrason. Ferr. 48 (2001) 232-248.