A modified Marmottant model to study the effects of a shell rupture on the subharmonic threshold of encapsulated microbubbles

Document Type : Research Paper


Faculty of Mechanical Engineering, Shahid Rajaee Training Teacher University, Tehran, IRAN


This study considers the radial behavior of a coated microbubble after a shell rupture using the Marmottant model. The surface tension of the encapsulated microbubble should equal the free bubble in the rupture state of the Marmottant model. Despite the assumption that the bubble is considered free in the third state, dilatational interfacial viscosity is constant in the equation in this model. This paper assumes that dilatational interfacial viscosity decreases gradually after shell rupture until it becomes zero. The decrease of dilatational interfacial viscosity caused by the shell rupture significantly affects radial behavior and the nonlinear response of the encapsulated microbubble, such as subharmonic response. Because the subharmonic response is extensively used in ultrasound imaging, the effect of a decrease in dilatational interfacial viscosity on the subharmonic threshold needs to be investigated. In figures showing the radius versus time and the frequency response of the coated microbubble, it is observed that at high excitation pressure, the proposed model is more nonlinear than the Marmottant model, resulting in a lower subharmonic threshold.

Graphical Abstract

A modified Marmottant model to study the effects of a shell rupture on the subharmonic threshold of encapsulated microbubbles


  • A modified model for the Marmottant model was investigated.
  • κS in this model gradually decreases after rupturing the shell until it becomes zero. 
  • The model offers a lower subharmonic threshold than the Marmottant model.


[1] N. De Jong, R. Cornet, C.T. Lancee, Higher harmonics of vibrating gas-filled microspheres, Part one: simulations, Ultrasonics, 32 (1994) 447-453.
[2] C.C. Church,  The effects of an elastic solid surface layer on the radial pulsations of gas bubbles, J. Acoust. Soc. Am. 97 (1995) 1510-1521.
[3] N. De Jong, L. Hoff, Ultrasound scattering properties of Albunex microspheres, Ultrasonics 31 (1993) 175-181.
[4] S.M. Van der Meer, B. Dollet, M.M. Voormolen, C.T. Chin, A. Bouakaz, N. De Jong, et al., Microbubble spectroscopy of ultrasound contrast agents, J. Acoust. Soc. Am. 121 (2007) 648-656.
[5] L. Hoff, P.C. Sontum, J.M. Hovem, Oscillations of polymeric microbubbles: Effect of the encapsulating shell, J. Acoust. Soc. Am. 107 (2000) 2272-2280.
[6] D. Chatterjee, K. Sarkar, A Newtonian rheological model for the interface of microbubble contrast agents, Ultrasound Med. Biol. 29 (2003) 1749-1757.
[7] P.M. Shankar, P.D. Krishna, V.L. Newhouse, Subharmonic backscattering from ultrasound contrast agents, J. Acoust. Soc. Am. 106 (1999) 2104-2110.
[8] K. Sarkar, W.T. Shi, D. Chatterjee, F. Forsberg,  Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation, J. Acoust. Soc. Am. 118 (2005) 539-550.
[9] P. Marmottant, S. van der Meer, M. Emmer, M. Versluis, N. De Jong, S. Hilgenfeldt, D. Lohse, A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture, J. Acoust. Soc. Am. 118 (2005) 3499-3505.
[10] M. Emmer, A. Van Wamel, D.E. Goertz, N. De Jong, The onset of microbubble vibration, Ultrasound Med. Biol. 33 (2007) 941-949.
[11] N. De Jong, M.C. Emmer, T. Chin, A. Bouakaz, F. Mastik, D. Lohse, Compression-only behavior of phospholipid-coated contrast bubbles, Ultrasound Med. Biol. 33 (2007) 653-656.
[12] J. Tu, J. Guan, Y. Qiu, T.J. Matula, Estimating the shell parameters of SonoVue® microbubbles using light scattering, J. Acoust. Soc. Am. 12 (2009) 2954-2962.
[13] A.A. Doinikov, J.F. Haac, P.A. Dayton, Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles, Ultrasonics 49 (2009) 269-275.
[14] S. Paul, R. Nahire, S. Mallik, K. Sarkar, Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery, Comput. Mech. 53 (2014) 413-435.
[15] S. Paul, A. Katiyar, K. Sarkar, K.D. Chatterjee, W.T. Shi, F. Forsberg, Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model, J. Acoust. Soc. Am. 127 (2010) 3846-3857.
[16] M. Overvelde, V. Garbin, J. Sijl, B. Dollet, N. De Jong, D. Lohse, M. Versluis, Nonlinear shell behavior of phospholipid-coated microbubbles, Ultrasound Med. Biol. 36 (2010) 2080-2092.
[17] B. Helfield, X. Chen, B. Qin, F.S. Villanueva,  Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity, J. Acoust. Soc. Am. 139 (2016) 204-214.
[18] F. Forsberg, W.T. Shi, B.B. Goldberg, Subharmonic imaging of contrast agents, Ultrasonics, 38 (2000) 93-98.
[19] F. Forsberg, J.B. Liu, W.T. Shi, J. Furuse, M. Shimizu, B. Barry, In vivo pressure estimation using subharmonic contrast microbubble signals: Proof of concept, IEEE T. Ultrason. Ferr. 52 (2005) 581-583. 
[20] P.M. Shankar, P.D. Krishna, V.L. Newhouse, Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement, Ultrasound Med. Biol. 24 (1998) 395-399.
[21] D. Adam, M. Sapunar, E. Burla, On the relationship between encapsulated ultrasound contrast agent and pressure, Ultrasound Med. Biol. 31 (2005) 673-686.
[22] K.S. Andersen, J.A. Jørgen, Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent, Ultrasonics, 50 (2010) 294-299.
[23] A. Katiyar, K. Sarkar, F. Forsberg, Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure, J. Acoust. Soc. Am. 129 (2011) 2325-2335. 
[24] L.M. Leodore, F. Forsberg, W.T. Shi, P5B-6 in-vitro pressure estimation obtained from subharmonic contrast microbubble signals, Proc. IEEE Ultrason. Symp. (IUS) (2007) 2207-2210. 
[25] W.T. Shi, F. Forsberg, J.S. Raichlen, L. Needleman B.B. Goldberg, Pressure dependence of subharmonic signals from contrast microbubbles, Ultrasound Med. Biol. 25 (1999) 275-283. 
[26] N. Mobadersany, A. Katiyar, K. Sarkar, Effects of ambient pressure on the subharmonic response from encapsulated microbubbles, arXiv preprint arXiv: 1507.04829 (2015).
[27] D. Chatterjee, P. Jain, K. Sarkar, Ultrasound-mediated destruction of contrast microbubbles used for medical imaging and drug delivery, Phys. Fluids, 17 (2005) 100603.
[28] A. Katiyar, K. Sarkar, Excitation threshold for subharmonic generation from contrast microbubbles, J. Acoust. Soc. Am. 130 (2011) 3137-3147.
[29] A. Katiyar, K. Sarkar, F. Forsberg, Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure, J. Acoust. Soc. Am. 129 (2011) 2325-2335.
[30] A.Y. Ammi, R.O. Cleveland, J. Mamou, G.I. Wang, S.L. Bridal,W.D. O’Brien, Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals, IEEE T. Ultrason. Ferr. 53 (2006) 126-136.
[31] J.E. Chomas, P. Dayton, J. Allen, K. Morgan, K.W. Ferrara, Mechanisms of contrast agent destruction, IEEE T. Ultrason. Ferr. 48 (2001) 232-248.
Volume 7, Issue 1
May 2021
Pages 41-50
  • Receive Date: 27 June 2021
  • Revise Date: 08 March 2022
  • Accept Date: 13 April 2022
  • First Publish Date: 13 April 2022