[1] T. Sun, L. Feng, X. Gao, L. Jiang, Bioinspired surfaces with special wettability, Accounts Chem. Res. 38 (2005) 644-652.
[2] K. Liu, X. Yao, L. Jiang, Recent developments in bio-inspired special wettability, Chem. Soc. Rev. 39 (2010) 3240-3255.
[3] X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, L. Jiang, The dry‐style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Adv. Mater. 19 (2007) 2213-2217.
[4] Y. Wang, J. Xue, Q. Wang, Q. Chen, J. Ding, Verification of icephobic/anti-icing poperties of a superhydrophobic surface, ACS Appl. Mater. Inter. 5 (2013) 3370-3381.
[5] E. Taghvaei, A. Moosavi, A. Nouri-Borujerdi, M.A. Daeian, S. Vafaeinejad, Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction, Energy 125 (2017) 1-10.
[6] E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, Recent advances in designing superhydrophobic surfaces, J. Colloid. Interf. Sci. 402 (2013) 1-18.
[7] D. Quéré, Fakir droplets, Nat. Mater. 1 (2002) 14-15.
[8] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1-8.
[9] Y. Fan, C. Li, Z. Chen, H. Chen, Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties, Appl. Surf. Sci. 258 (2012) 6531-6536.
[10] X.H. Chen, G. Yang, G. Bin, L.H. Kong, D. Dong, L.G. Yu, J.M. Chen, P.Y. Zhang, Direct growth of hydroxy cupric phosphate heptahydrate monocrystal with honeycomb-like porous structures on copper surface mimicking lotus leaf, Cryst. Growth Des. 9 (2009) 2656-2661
[11] Y. Huang, D.K. Sarkar, D. Gallant, X.G. Chen, Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process, Appl. Surf. Sci. 282 (2013) 689-694.
[12] T. Liu, Y. Yin, S. Chen, X. Chang, S. Cheng, Superhydrophobic surfaces improve corrosion resistance of copper in seawater, Electrochim. Acta, 52 (2007) 3709-3713.
[13] K. Seo, M. Kim, S. Seok, D. H. Kim, Transparent superhydrophobic surface by silicone oil combustion, Colloid. Surface. A, 492 (2016) 110-118.
[14] M. Raimondo, F. Veronesi, G. Boveri, G. Guarini, A. Motta, R. Zanoni, Superhydrophobic properties induced by sol-gel routes on copper surfaces, Appl. Surf. Sci. 422 (2017) 1022–1029.
[15] J. Li, Z. Jing, F. Zha, Y. Yang, Q. Wang, Z. Lei, Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes, ACS Appl. Mater. Inter. 6 (2014) 8868-8877.
[16] J. Li, H. Wan, X. Liua, Y. Ye, H. Zhou, J. Chen, Facile fabrication of superhydrophobic ZnO nanoparticle surfaces with erasable and rewritable wettability, Appl. Surf. Sci. 258 (2012) 8585-8589.
[17] H. Zhang, X. Zeng, Y. Gao, F. Shi, P. Zhang, J.F. Chen, A facile method to prepare superhydrophobic coatings by calcium carbonate, Ind. Eng. Chem. Res. 50 (2011) 3089-3094.
[18] Z. Hu, Y. Deng, Ind. Eng. Superhydrophobic surface fabricated from fatty acid-modified precipitated calcium carbonate, Chem. Res. 49 (2010) 5625-5630.
[19] E. Richard, S.T. Aruna, B.J. Basu, Superhydrophobic surfaces fabricated by surface modification of alumina particles, Appl. Surf. Sci. 258 (2012) 10199-10204.
[20] H. Ogihara, J. Xie, J. Okagaki, T. Saji, Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency, Langmuir, 28 (2012) 4605-4608.
[21] S.A. Jeong, T.J. Kang, Superhydrophobic and transparent surfaces on cotton fabrics coated with silica nanoparticles for hierarchical roughness, Text. Res. J. 87 (2017) 552-560.
[22] J. Li, X. Liu, Y. Ye, H. Zhoua, J.Chena, A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property, Appl. Surf. Sci. 258 (2011) 1772-1775.
[23] R.V. Lakshmi, B.J. Basu, Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide, J. Colloid. Interf. Sci. 339 (2009) 454-260.
[24] J. Li, Z. Jing, Y. Yang, L. Yan, F. Zha, Z. Lei, A facile solution immersion process for the fabrication of superhydrophobic ZnO surfaces with tunable water adhesion, Mater. Lett. 108 (2013) 267-269.
[25] N. Saleema, M. Farzaneh, Thermal effect on superhydrophobic performance of stearic acid modified ZnO nanotowers, Appl. Surf. Sci. 254 (2008) 2690-2695.
[26] J.C. Liu, J.H. Jean, C.C. Li, Dispersion of nano‐sized γ‐alumina powder in non‐polar solvents, J. Am. Ceram. Soc. 89 (2006) 882-887.
[27] J. Webber, J.E. Zorzi, C.A. Perottoni, S. Moura e Silva, R.C.D. Cruz, Identification of α-Al2O3 surface sites and their role in the adsorption of stearic acid, J. Mater. Sci. 51 (2016) 5170-5184.
[28] R. Heryanto, M. Hasan, E. Abdullaha, A. Kumoro, Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models, ScienceAsia, 33 (2007) 469-472.
[29] B. Calvo, I. Collado, A. Cepeda, Solubilities of palmitic acid in pure solvents and its mixtures, J. Chem. Eng. Data, 54 (2009) 64-68.
[30] B. Calvo, I. Collado, A. Cepeda, Solubilities of stearic acid in organic solvents and in azeotropic solvent mixtures, J. Chem. Eng. Data, 53 (2008) 628-633.
[31] M. Srivastava, B.B.J. Basu, K.S. Rajam, Improving the hydrophobicity of ZnO by PTFE incorporation, J. Nanotechnol. 2011 (2011) Article ID 392754.
[32] L. Yao, M. Zheng, C. Li, L. Ma, W. Shen, Facile synthesis of superhydrophobic surface of ZnO nanoflakes: Chemical coating and UV-induced wettability conversion, Nanoscale Res. Lett. 7 (2012) 216.
[33] N. Agrawal, S. Munjal, M.Z. Ansari, N. Khare, Superhydrophobic palmitic acid modified ZnO nanoparticles, Ceram. Int. 43 (2017) 14271-14276.
[34] H. Yoon, H. Kim, S.S. Latthe, M. Kim, S. Al-Deyabd, S.S. Yoon, A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying, J. Mater. Chem. A, 3 (2015) 11403-11410.
[35] Y. Wang, J. Ma, H. Cheon, Y. Kishi, Aggregation behavior of tetraenoic fatty acids in aqueous solution, Angew. Chem. Int. Edit. 46 (2007) 1333-1336.
[36] H. Vorum, R. Brodersen, U. Kragh-Hansen, A. O. Pedersen, Solubility of long-chain fatty acids in phosphate buffer at pH 7.4, Biochim. Biophys. Acta, 1126 (1992) 135-142.
[37] S. Shibuichia, T. Yamamoto, T. Ond, K. Tsujii, Super water- and oil-repellent surfaces resulting from fractal structure, J. Colloid. Interf. Sci. 208 (1998) 287-294.
[38] Sh. Sharifi Malvajerdi, A. Sharifi Malvajerdi, M. Ghanaatshoar, Protection of CK45 carbon steel tillage tools using TiN coating deposited by an arc-PVD method, Ceram. Int. 45 (2019) 3816-3822.
[39] D. Chaudhary, N. Khare, V.D. Vankar, Ag nanoparticles loaded TiO2/MWCNT ternary nanocomposite: A visible-light-driven photocatalyst with enhanced photocatalytic performance and stability, Ceram. Int. 42 (2016) 15861-15867.
[40] L. Yeping, F. Yue-E, F. Rong, X. Jinyun, Study of plasmapolymerization deposition of C2H2/CO2/H2 onto ethylene-co-propylene rubber membranes, Radiat. Phys. Chem. 60 (2001) 637-642.
[41] A. Dupré, Theorie Mecanique de la Chaleur, Chapter IX, Actions Moleculaires (Suite), Gauthier-Villars, Paris, 1869.