Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation

Document Type : Research Article


School of Chemistry, Damghan University, Damghan, Iran


Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with 100% removal of methyl orange in 50 minutes. The influence of irradiation time, catalyst concentration, pH, and calcination temperature on the photodegradation of methyl orange was investigated, and the appropriate amounts obtained for these parameters were 60 min, 5 g/l, 10, and 450 °C, respectively. The degradation of methyl orange over TiO2:Mg2+/zeolite was about 82% after five cycles, confirming the suitable reusability of the photocatalyst.

Graphical Abstract

Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation


  • The TiO2:Mg2+/zeolite composite can degrade MO under visible light successfully.
  • XRF, XRD, FTIR and SEM measurements were performed for structural properties.
  • Addition of Mg in TiO2/zeolite combination has significant effect on degradation.
  • The photocatalyst is found to be reusable.


[1] K. Guesh, A. Mayoral, C. Marquez-Alvarezd, Y. Chebude, I. Diaz, Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia, Micropor. Mesopor. Mat. 225 (2016) 88-97.
[2] N. Setthaya, P. Chindaprasirt, Sh. Yin, K. Pimraksa, TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye, Powder Technol. 313 (2017) 417-426.
[3] Y. He, H. Lin, Y. Dong, Q. Liu, L. Wang, Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite, Chemosphere, 164 (2016) 387-395.
[4] A. Ates, G. Akgul, Modification of natural zeolite with NaOH for removal of manganese in drinking water, Powder Technol. 287 (2016) 285-291.
[5] A. Ates, C. Hardacre, The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments, Adv. Colloid Interfac. 372 (2012) 130-140.
[6] M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of supporting and hybridizing of FeO and ZnO semiconductors onto an Iranian clinoptilolite nano-particles and the effect of ZnO/FeO ratio in the solar photodegradation of fish ponds waste water, Mat. Sci. Semicon. Proc. 27 (2014) 833-40.
[7] J. Krysa, M. Keppert, J. Jirkovsky, V. Stengl, J. Subrt, The effect of thermal treatment on the properties of TiO2 photocatalyst, Mater. Chem. Phys. 86 (2004) 333-339.
[8] M.A. Aramendia, V. Borau, C. Jimenez, A. Marinas, J.M. Marinas, J.R. Ruiz, F.J. urbano, Magnesium-containing mixed oxides as basic catalysts: base characterization by carbon dioxide TPD-MS and test reactions, J. Mol. Catal. A-Chem. 218 (2004) 81-90.
[9] E.A.V. Ferri, J.C. Sczancoski, L.S. Cavalcante, E.C. Paris, J.W.M. Espinosa, A.T. de Figueiredo, P.S. Pizani, V.R. Mastelaro, J.A. Varela, E. Longo, Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting, Mater. Chem. Phys. 117 (2009) 192-198.
[10] W.L. Jin, J.X. Gao, H.S. Chen, F.X. Zeng, Z.G. Zhang, N.J. Liu, J. Guan, Photocatalytic reduction of nitrate ion in drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst, J. Photoch. Photobio. A, 162 (2004) 585-590.
[11] H. Baniamerian, S. Shokrollahzadeh, Improvement in photocatalysts and photocatalytic reactors for water and wastewater treatment: A review, J. Particle Sci. Technol. 2 (2016) 119-140.
[12] M. Rezaei, M. Khajenoori, B. Nematollahi, Preparation of nanocrystalline MgO by surfactant assisted precipitation method, Mater. Res. Bull. 46 (2011) 1632-1637.
[13] Th. Perraki, A. Orfanoudaki, Mineralogical study of zeolites from Pentalofos area, Thrace, Greece, Appl. Clay Sci. 25 (2004) 9-16.
[14] Y. Kim, M. Yoon, TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium, J. Mol. Catal. A-Chem. 168 (2001) 257-263.
[15] P. Thuadaij, K. Pimraksa, A. Nuntiya, Synthesis of high cation exchange capacity Faujasite from high calcium fly Ash, Aust. J. Bas. Appl. Sci. 6 (2012) 194-208.
[16] A. Tadjarodi, M. Haghverdi, V. Mohammadi, Preparation and characterization of nanoporous silica aerogel from rice husk ash by drying at atmospheric pressure, Mater. Res. Bull. 47 (2012) 2584-2589.
[17] I. Kuzniarska-Biernacka, M.A. Fonseca, I.C. Neves, Manganese complexes with triazenido ligands encapsulated in NaY zeolite as heterogeneous catalysts, Inorg. Chim. Acta, 394 (2013) 591-597.
[18] D. Wu, B. Zhang, C. Li, Z. Zhang, H. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment, J. Colloid Interf. Sci. 304 (2006) 300-306.
[19] K.M. Alvarez, J. Alvarado, B.S. Soto, M.A. Hernandez, Synthesis of TiO2 nanoparticles and TiO2-Zeolite composites and study of optical properties and structural characterization, Optik, 169 (2018) 137-146.
[20] G. Zhang, A. Song, Y. Duan, S. Zheng, Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants, Micropor. Mesopor. Mat. 255 (2018) 61-68.
[21] R. Camposeco, S. Castillo, M. Hinojos-Reyes, I. Mejia-Centeno, R. Zanella, Effect of incorporating vanadium oxide to TiO2, Zeolite-ZM5, SBA and P25 supports on the photocatalytic activity under visible light, J. Photoch. Photobio. A, 367 (2018) 178-187.
[22] T. Tsoncheva, L. Ivanova, C. Minchev, M. Froba, Cobalt-modified mesoporous MgO, ZrO2 and CeO2 oxides as catalysts for methanol decomposition, J. Colloid. Interf. Sci. 333 (2009) 277-284.
[23] Y.X. Zhang, Y. Jia, Synthesis of MgO/TiO2/Ag composites with good adsorption combined with photodegradation properties, Mat. Sci. Eng. B-Adv. 228 (2018) 123-131.
[24] D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemoller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin, Appl. Catal. B-Environ. 166-167 (2015) 45-55.
[25] I. Jansson, S. Suárez, F. Javier Garcia-Garcia, B. Sánchez, Zeolite–TiO2 hybrid composites for pollutant degradation in gas phase, Appl. Catal. B-Environ. 178 (2015) 100-107.
[26] Y. Kim, M. Yoon, TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium, J. Mol. Catal. A-Chem. 168 (2001) 257-263.
[27] N. Setthaya, P. Chindaprasirt, S. Yin, K. Pimraksa, TiO2-Zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye, Powder Technol. 313 (2017) 417-426.
[28] P. Aberoomand, S. Moradi, S. Samadi, M.S. Tehrani, M.H. Givianrad, Effect of CMC and HPC mixture on the photocatalytic activity of Nd-TiO2/SiO2 film under visible light irradiation, Turk. J. Chem. 35 (2011) 37-44.
[29] Q. Zhao, M. Wang, H. Yang, D. Shi, Y. Wang, Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders, Ceram. Int. 44 (2018) 5145-5154.
[30] M. Arabnezhad, M. Shafiee Afarani, A. Jafari, Co-precipitation synthesis of ZnO-TiO2 nanostructure composites for arsenic photodegradation from industrial wastewater, Int. J. Environ. Sci. Tech. 16 (2019) 463-468.
[31] Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu, H. Li, Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite, Powder Technol. 274 (2015) 88-97.
[32] Q. Sun, H. Li, S. Zheng, Z. Sun, Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr(VI), Appl. Surf. Sci. 311 (2014) 369-376.
[33] E. Khaksar, M. Shafiee Afarani, A. Samimi, In Situ solvothermal crystallization of TiO2 nanostructure on aumina granules for photocatalytic wastewater treatment, J. Mater. Eng. Perform. 23 (2014) 92-100.
[34] M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigments, 77 (2008) 327-334.
[35] M. Muruganandham, M. Swaminathan, Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process, Dyes Pigments, 68 (2006) 133-142.
[36] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Energ. Mat. Sol. C. 77 (2003) 65-82.
[37] M. Shahmirzaee, M. Shafiee Afarani, A. Iran Nejhad, A.M. Arabi, Microwave-assisted combustion synthesis of ZnAl2O4 and ZnO nanostructure particles for photocatalytic wastewater treatment, Particul. Sci. Technol. 37 (2019) 110-117.