[1] F. Scala, R. Chirone, P. Salatino, in: F. Scala (Ed.), Fluidized bed technologies for near-zero emission combustion and gasification, Woodhead Publishing Limited, New York (2013).
[2] J. Werther, J. Reppenhagen, in: W.C. Yang (Ed.), Handbook of fluidization and fluid-particle systems, Marcel Dekker, New York (2003).
[3] T.J. Jones, J.K. Russel, C.J. Lim, N. Ellis, J.R. Grace, Pumice attrition in an air jet, Powder Technol. 308 (2017) 298-305.
[4] W.L. Forsythe, W.R. Hertwig, Attrition characteristics of fluid cracking catalysts-laboratory studies, J. Ind. Chem. Res. 41 (1949) 1200-1206.
[5] J. Hao, Y. Zhao, M. Ye, Z. Liu, Attrition of methanol to olefins catalyst in jet cup, Powder Technol. 316 (2017) 79-86.
[6] A. Knight, N. Ellis, J.R. Grace, C.J. Lim, CO2 sorbent attrition testing for fluidized bed systems, Powder Technol. 266 (2014) 412-423.
[7] Z. Sun, M. Xiao, S. Wang, D. Han, S. Song, G. Chenb, Y. Meng, Electrostatic shield effect: an effective way to suppress dissolution of polysulfide anions in lithium-sulfur battery, J. Mater. Chem. 2 (2014) 15938-15944.
[8] B. Ambelard, S. Bertholin, C. Bobin, T. Gauthier, Development of an attrition evaluation method using a Jet Cup rig, Powder Technol. 274 (2015) 455-465.
[9] Y.C. Ray, T.S. Jiang, C.Y. Wen, Particle attrition phenomena in a fluidized bed, Powder Technol. 100 (1998) 193-206.
[10] C.R. Bemrose, J. Bridgewater, A review of attrition and attrition test methods, Powder Technol. 49 (1987) 97-126
[11] K.R. Yuregir, M. Ghadiri, R. Clift, Impact attrition of sodium chloride crystals, Chem. Eng. Sci. 42 (1987) 843-853.
[12] M. Ghadiri, K.R. Yuregir, H.M. Pollock, J.D.J. Ross, N. Rolfe, Influence of processing conditions on attrition of NaCl crystals, Powder Technol. 65 (1991) 311-320.
[13] J.A.S. Cleaver, M. Ghadiri, Impact attrition of sodium carbonate monohydrate crystals, Powder Technol. 76 (1993) 15-22.
[14] J.J. Pis, A. B. Fuertes, V. Artos, A. Suarez, F. Rubiera, Attrition of coal ash in afluidized bed, Powder Technol. 66 (1991) 41-46.
[15] J. Tomeczek, P. Mocek, Attrition of coal ash particles in a fluidized-bed reactor, AICHE J. 53 (2007) 1159-1163.
[16] D.S. Kalakkad, M.D. Shroff, S. Köhler, N. Jackson, A.K. Datye, Attrition of precipitated iron Fischer-Tropsch catalysts, Appl. Catal. A, 133 (1995) 335-350.
[17] R. Zhao, J.G. Goodwin Jr., K. Juthimurugesan, S. K. Gangwal, J.J. Spivey, Spray-dried iron Fischer-Tropsch catalyst. 1. Effect of structure on the attrition resistance of the catalysts in the calcined state, Ind. Eng. Chem. Res. 40 (2001) 1065-1075.
[18] R. Zhao, J.G. Goodwin Jr., K. Juthimurugesan, S. K. Gangwal, J.J. Spivey, Spray-dried iron Fischer-Tropsch catalyst. 2. Effect of carbonization on catalyst attrition resistance, Ind. Eng. Chem. Res. 40 (2001) 1320-1328.
[19] T.J. Lin, X. Meng, L. Shi, Attrition studies of an iron Fischer-Tropsch catalyst used in a pilot-scale stirred tank slurry reactor, Ind. Eng. Chem. Res. 51 (2012) 13123-13131.
[20] M.Stein, J.P.K. Seville, D.J. Parker, Attrition of porous glass particles in a fluidized bed, Powder Technol. 100 (1998) 242-250.
[21] L. Guo, H.B. Zhao, J.C. Ma, D.F. Mei, C.G. Zheng, Comparison of large-scale production methods of Fe2O3/Al2O3 oxygen carriers for chemical looping combustion, Chem. Eng. Technol. 37 (2014) 1211-1219.
[22] M. Arjmand, V. Frick, M. Ryden, H. Leion, T.P. Mattisson, A. Lyngfelt, Energ. Fuel. 29 (2015) 1868-1880.
[23] G. Azimi, T. Mattison, H. Leion, M. Ryden, A. Lyngfeld, Comprehensive study of Mn-Fe-Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU), Int. Greenh. Gas Con. 34 (2015) 12-24.
[24] F. Scala, A. Cammarota, R. Chironne, P. Salatino, Comminution of limestone during batch fluidized-bed calcination and sulfation, AICHE J. 43 (1997) 363-373.
[25] C.L. Lin, M.Y. Wey, Effects of high temperature and combustion on fluidized material attrition in a fluidized bed, Korean J. Chem. Eng. 20 (2003) 1123-1130.
[26] C.L. Lin, M.Y. Wey, Influence of hydrodynamic parameters on particle attrition during fluidization at high temperature, Korean. J. Chem. Eng. 22 (2005) 154-160.
[27] Z. Chen, C.J. Lim, J.R. Grace, Study of limestone particle impact attrition, Chem. Eng. Sci. 62 (2007) 867-877.
[28] Y.C. Ray, T.S. Jiang, T.L. Jiang, Particle population model for a fluidized bed with attrition, Powder Technol. 52 (1987) 35-48.
[29] Z. Chen, J.R. Grace, C.J. Lim, Limestone particle attrition and size distribution in a small circulating fluidized bed, Fuel, 87 (2008) 1360-1371.
[30] Z. Chen, J.R. Grace, C.J. Lim, Development of particle size distribution during limestone impact attrition, Powder Technol. 207 (2011) 55-64.
[31] F. Li, C. Briens, F. Berruti, J. McMillan, Particle attrition with supersonic nozzles in a fluidized bed at high temperature, Powder Technol. 228 (2012) 285-294.
[32] M. Hartman, K. Svoboda, M. Pohorely, M. Syc, M. Jeremias, Attrition of dolomitic lime in a fluidized-bed reactor at high temperature, Chem. Pap. 67 (2013) 164-172.
[33] W.L. Forsythe, W.R. Hertwig, Attrition characteristics of fluid cracking catalysts. Laboratory studies, Ind. Eng. Chem. 41 (1949) 1200-1206.
[34] ASTM-D-5757-00, Standard test method for determination of attrition and abrasion of powdered catalysts by air jet, ASTM (2006).