[1] R. Zhang, Q. Wen, W. Qian, D.S. Su, Q. Zhang, F. Wei, Superstrong ultralong carbon nanotubes for mechanical energy storage, Adv. Mater. 23 (2011) 3387-3391.
[2] B.C. Edwards, Design and deployment of a space elevator, Acta Astronaut. 47 (2000) 735-744.
[3] N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A. Amaratunga, Nanotechnology: Synthesis of carbon ‘onions’ in water, Nature, 414 (2001) 506-507.
[4] H. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. Zhu, D.H. Wua, X.H. Chen, Formation of carbon nanotubes in water by the electric-arc technique, Chem. Phys. Lett. 366 (2002) 664-669.
[5] H. Lange, M. Sioda, A. Huczko, Y.Q. Zhu, H.W. Kroto, D.R.M.Walton, Nanocarbon production by arc discharge in water, Carbon, 41 (2003) 1617-1623.
[6] M.V. Antisari, R. Marazzi, R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments, Carbon, 41 (2003) 2393-2401.
[7] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert et al., Crystalline ropes of metallic carbon nanotubes, Science, 273 (1996) 483-487.
[8] W. Liu, S.-P. Chai, A.R. Mohamed, U. Hashim, Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments, J. Ind. Eng. Chem. 20 (2014) 1171-1185.
[9] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
[10] P. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press, Cambridge, 1999.
[11] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
[12] P.P. Wulan, T.P.J. Silaen, Synthesis of ACNT on quartz substrate with catalytic decomposition reaction from Cinnamomum camphora by using FC-CVD method, AIP Conf. Proc. 1840, (2017) 080003-1–080003-8.
[13] Y. Li, G. Xu, H. Zhang, T. Li, Y. Yao,Q. Li, Z. Dai, Alcohol-assisted rapid growth of vertically aligned carbon nanotube arrays, Carbon, 91 (2015) 45-55.
[14] Q. Wen, R. Zhang, W. Qian, Y. Wang, P. Tan, J. Nie, F. Wei, Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80-90 μm/s, Chem. Mater. 22 (2010) 1294-1296.
[15] G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia, Carbon, 44 (2006) 969-973.
[16] W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin, X. Sun, Y. Zhang, C. Yan, Y. Li, Copper catalyzing growth of single-walled carbon nanotubes on substrates, Nano lett. 6 (2006) 2987-2990.
[17] Q. Li, X.F. Zhang, R.F. DePaula, L.X. Zheng, Y.H. Zhao, L. Stan et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning, Adv. Mater. 18 (2006) 3160-3163.
[18] E. Einarsson, Y. Murakami, M. Kadowaki, S. Maruyama, Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements, Carbon, 46 (2008) 923-930.
[19] E.R. Meshot, D.L. Plata, S. Tawfick, Y. Zhang, E.A. Verploegen, A.J. Hart, Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst, ACS Nano, 3 (2009) 2477-2486.
[20] B.H. Choi, H. Yoo, Y.B. Kim, J.H. Lee, Effects of Al buffer layer on growth of highly vertically aligned carbon nanotube forests for in situ yarning, Microelectron. Eng. 87 (2010) 1500-1505.
[21] G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin et al., Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen, Carbon, 50 (2012) 4002-4009.
[22] M.Z. Naghadehi, M. Samaei, M. Ranjbarnia, V. Nourani, State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming. 126 (2018) 46-57.
[23] A.H. Gandomi, A.H. Alavi, S. Kazemi, M. Gandomi, Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement, Automat. Constr. 42 (2014) 112-121.
[24] E. Momeni, R. Nazir, D.J. Armaghani, H. Maizir, Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN, Measurement, 57 (2014) 122-131.
[25] A. Shafaei, G.R. Khayati, A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm, Measurement, 150 (2020) 107199.
[26] M.M. Jafari, G.R. Khayati, M. Hosseini, H. Danesh-Manesh, Modeling and optimization of roll-bonding parameters for bond strength of Ti/Cu/Ti clad composites by artificial neural networks and genetic algorithm, Int. J. Eng. Trans. C, 30 (2017) 1885-1893.
[27] K. Patra, A.K. Jha, T. Szalay, J. Ranjan, L. Monostori, Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals, Precis. Eng. 48 (2017) 279-291.
[28] V. Rajamohan, R. Sedaghati, S. Rakheja, Optimum design of a multilayer beam partially treated with magnetorheological fluid, Smart Mater. Struct. 19 (2010) 065002.
[29] M. Zeraati, G.R. Khayati, N. Materials, Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm, Journal of Ultrafine Grained and Nanostructured Materials, 51 (2018) 183-192.
[30] P. Zhu, S. Zhou, J. Zhen, Y. Li, Application of artificial neural network in composite research. In: Tan Y., Shi Y., Tan K.C. (eds), Advances in Swarm Intelligence, ICSI 2010, Lecture Notes in Computer Science, 6146 (2010) 558-563.
[31] J. Kennedy, R. Eberhart, Particle swarm Optimization, in Proceedings of IEEE International Conference on Neural Networks IV, 1995.
[32] R.R. Karri, J. Sahu, Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment, Journal of environmental management. 206 (2018) 178-191.
[33] S. Du, W. Li, K. Cao, A learning algorithm of artificial neural network based on GA-PSO, 2006 6th World Congress on Intelligent Control and Automation, Dalian, 2006, pp. 3633-3637.
[34] X.H. Shi, Y.H. Lu, C.G. Zhou, H.P. Lee, W.Z. Lin Y.C. Liang, Hybrid evolutionary algorithms based on PSO and GA, The 2003 Congress on Evolutionary Computation (CEC '03), Canberra, ACT, Australia, Vol.4 (2003) pp. 2393-2399.
[35] G.-G. Wang, A.H. Gandomi , X.-S. Yang, A.H. Alavi, A novel improved accelerated particle swarm optimization algorithm for global numerical optimization, Eng. Computation. 31 (2014) 1198-1220.
[36] J.R. Koza, Genetic Programming II, Automatic Discovery of Reusable Subprograms, MIT Press, Cambridge, MA, 1194.
[37] İ. Karahan, R. Özdemir, A new modeling of electrical resistivity properties of ZnFe alloys using genetic programming, Optoelectron. Adv. Mat. 4 (2010) 812-815.
[38] A.H. Gandomi, D.A. Roke, Assessment of artificial neural network and genetic programming as predictive tools, Adv. Eng. Softw. 88 (2015) 63-72.
[39] S.N. Sivanandam, S.N. Deepa, Genetic algorithm optimization problems, in Introduction to Genetic Algorithms, Springer, 2008, pp. 165-209.
[40] M.İ. Coşkun, İ.H. Karahan, Modeling corrosion performance of the hydroxyapatite coated CoCrMo biomaterial alloys, J. Alloy. Compd. 745 (2018) 840-848.
[41] Y. Benjamini, Opening the box of a boxplot, Am. Stat. 42 (1988) 257-262.
[42] B. Tiryaki, Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees, Eng. Geol. 99 (2008) 51-60.
[43] A.R. Sayadi, M.R. Khalesi, M.K. Borji, A parametric cost model for mineral grinding mills, Miner. Eng. 55 (2014) 96-102.
[44] A.R. Sayadi, A. Lashgari, J.J. Paraszczak, Hard-rock LHD cost estimation using single and multiple regressions based on principal component analysis, Tunn. Undergr. sp. Tech. 27 (2012) 133-141.
[45] H.F. Kaiser, An index of factorial simplicity, Psychometrika, 39 (1974) 31-36.
[46] R.S. Faradonbeh, M. Monjezi, Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms, Eng. Comput. 33 (2017) 835-851.
[47] O. Nerushev, S. Dittmar, R.-E. Morjan, F. Rohmund, E.E.B. Campbell, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition, J. Appl. Phys. 93 (2003) 4185-4190.
[48] R. Morjan, O.A. Nerushev, M. Sveningsson, F. Rohmund, L.K.L. Falk, E.E.B. Campbell, Growth of carbon nanotubes from C60, Appl. Phys.78 (2004) 253-261.
[49] M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10 (2010) 3739-3758.
[50] F. Ding, P. Larsson, J.A. Larsson, R. Ahuja, H. Duan, A. Rosén, K. Bolton, The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes, Nano Lett. 8 (2008) 463-468.