[1] Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M.R. Amer, C. Zhou, Review of electronics based on single-walled carbon nanotubes, in Single-Walled Carbon Nanotubes: Springer, 2019, pp. 189-224.
[2] G. Rahman, Z. Najaf,A. Mehmood, S. Bilal, A.H. Ali Shah,S. Ahmad Mian, G. Ali, An overview of the recent progress in the synthesis and applications of carbon nanotubes, C-J. Carbon Res. 5, (2019) 3.
[3] S. Banerjee, T. Hemraj-Benny, S.S. Wong, Routes towards separating metallic and semiconducting nanotubes, J. Nanosci. Nanotechno. 5 (2005) 841-855.
[4] L. Kurzepa, A. Lekawa‐Raus, J. Patmore, K. Koziol, Replacing copper wires with carbon nanotube wires in electrical transformers, Adv. Funct. Mater. 24 (2014) 619-624.
[5] C. Rinaldi, An invariant general solution for the magnetic fields within and surrounding a small spherical particle in an imposed arbitrary magnetic field and the resulting magnetic force and couple, Chem. Eng. Commun. 197 (2009) 92-111.
[6] H. Zhang, L. An, Progress in dielectrophoretic assembly of carbon nanotubes for sensing application, in MATEC Web of Conferences, 67 (2016) 06071.
[7] Q. Zhao, Z. Wang, L. Tong, Z. Zheng, W. Hu, J. Zhang, Selective sorting of metallic/semiconducting single-walled carbon nanotube arrays by ‘igniter-assisted gas-phase etching’, Mater. Chem. Front. 2, (2018) 157-162.
[8] M. Zheng, Sorting carbon nanotubes, in Single-Walled Carbon Nanotubes: Springer, 2019, pp. 129-164.
[9] H.A. Pohl, Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields, Cambridge Monographs on Physics, Cambridge University Press, Cambridge, 1978.
[10] M.P. Hughes, Nanoelectromechanics in Engineering and Biology, CRC press, NY, 2002.
[11] R. Krupke, F. Hennrich, H.V. Löhneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes, Science, 301 (2003) 344-347.
[12] S. Ammu, D.R. Heskett, The role of electric field and ultrasonication in the deposition and alignment of sngle-walled carbon nanotube networks using dielectrophoresis, World J. Cond. Mat. Phys. 3 (2013) 159-163.
[13] M.V. Gorshkov, A.S. Moskalenko, M.V. Shcherbak, Alternating electric field effect on the alignment of carbon nanotubes during the dielectrophoresis process, in AIP Conference Proceedings, AIP Publishing, 1989 (2018) , p. 030008.
[14] J. Kang, S. Hong, Y. Kim, S. Baik, Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation, Langmuir, 25 (2009) 12471-12474.
[15] M.-W. Lee, Y.-H. Lin, G.-B. Lee, Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces, Microfluid. Nanofluid. 8(2010) 609-617.
[16] C. Wei, T.-Y. Wei, F.-C. Tai, The characteristics of multi-walled carbon nanotubes by a two-step separation scheme via dielectrophoresis, Diam. Relat. Mater. 19 (2010) 573-577.
[17] A. Abdulhameed, I. Abdul Halin, M.N. Mohtar, M.N. Hamidon, The role of medium on the assembly of carbon nanotube by dielectrophoresis, J. Disper. Sci. Technol. 41 (2020) 1576-1587.
[18] A.K. Naieni, A. Nojeh, Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis, Nanotechnology, 23 (2012) 495606.
[19] A.I. Oliva-Avilés, A. Alonzo-García, V.V. Zozulya, F. Gamboa, J. Cob, F. Avilés, A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields, Meccanica, 53 (2018) 2773-2791.
[20] M.H. Nayfeh, M.K. Brussel, Electricity and magnetism, Dover Publications, NY, 2015.
[21] H. Morgan, N. Green, AC electrokinetics: colloids and nanoparticles, Research Studies Press LTD, Hertfordshire, England, 2003.
[22] S.B. Asokan, L. Jawerth, R.L. Carroll, R. Cheney, S. Washburn, R. Superfine, Two-dimensional manipulation and orientation of Acti-Myosin systems with dielectrophoresis, Nano Lett. 3 (2003) 431-437.
[23] H. Morgan, N.G. Green, Dielectrophoretic manipulation of rod-shaped viral particles, J. Electrostat. 42 (1997) 279-293.
[24] C. Wei, T.-Y. Wei, C.-H. Liang, F.-C. Tai, The separation of different conducting multi-walled carbon nanotubes by AC dielectrophoresis, Diam. Relat. Mater. 18 (2009) 332-336.
[25] J.-E. Kim, C.-S. Han, Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis, Nanotechnology, 16 (2005) 2245-2250.
[26] H. Morgan, A.G. Izquierdo, D. Bakewell, N.G. Green, A. Ramos, The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series, J. Phys. D Appl. Phys. 34 (2001) 1553-1561.
[27] V.L. Streeter, E.B. Wylie, Fluid Mechanics; SI Metric Ed., McGraw-Hill, NY, 1983.
[28] W.G. Don, H.P. Robert, Perry's Chemical Engineers' Handbook, 8th ed., McGraw-Hill Education, NY, 2008.
[29] H.K. Hansjörg Bipp, Formamides, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2011.
[30] D.R. Lide, CRC Handbook of Chemistry and Physics, 84th ed., CRC press, NY, 2004.
[31] K. Holmberg, Surfactants, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2011, pp. 1-56.
[32] R. Schmidt, K. Griesbaum, A. Behr, D. Biedenkapp, H. Voges, D. Garbe, C. Paetz, G. Collin, D. Mayer, H. Höke, Hydrocarbons, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2014, pp. 1-74.
[33] H. Ertl, R. Ghai, F. Dullien, Liquid diffusion of nonelectrolytes: Part II, AIChE J. 20 (1974) 1-20.
[34] C. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. 1 (1955) 264-270.
[35] G. Chen, Y. Hou, H. Knapp, Diffusion coefficients, kinematic viscosities, and refractive indices for heptane+ ethylbenzene, sulfolane + 1-methylnaphthalene, water + N, N-dimethylformamide, water + methanol, water + N-formylmorpholine, and water + N-methylpyrrolidone, J. Chem. Eng. Data, 40 (1995) 1005-1010.
[36] H. Ertl, F. Dullien, Self‐diffusion and viscosity of some liquids as a function of temperature, AIChE J. 19 (1973) 1215-1223.
[37] M. Saghir, C. Jiang, S. Derawi, E.H. Stenby, M. Kawaji, Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures, Eur. Phys. J. E, 15 (2004) 241-247.
[38] R. Cicoria, Y. Sun, Dielectrophoretically trapping semiconductive carbon nanotube networks, Nanotechnology, 19 (2008) 485303.
[39] C. Zhang, K. Khoshmanesh, A. Mitchell, K. Kalantar-Zadeh, Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems, Anal. Bioanal. Chem. 396 (2010) 401-420.
[40] K. Khoshmanesh, C. Zhang, S. Nahavandi, S. Baratchi, A. Mitchell, K. Kalantar‐zadeh, Dielectrophoretically patterned carbon nanotubes to sort microparticles, Electrophoresis, 31 (2010) 3380-3390.
[41] K. Khoshmanesh, C. Zhang, S. Nahavandi, F.J. Tovar-Lopez, S. Baratchi, A. Mitchell, K. Kalantar-zadeh, Size based separation of microparticles using a dielectrophoretic activated system, J. Appl. Phys. 108 (2010) 034904.