Adsorption of CO2 and SO2 on multi-walled carbon nanotubes: experimental data and modeling using artificial neural network

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

2 Chemical Engineering Department, Faculty of Chemical, Oil and Gas Engineering, Shiraz University, Shiraz, Iran

Abstract

Multi-walled carbon nanotubes (MWCNTs) containing hydroxylgroups (OH-MWCNT) were modified by functionalization with 3-[2-(2-aminoethylamino)ethylamino]propyl trimethoxysilane (TRI). Adsorption isotherms of pure CO2 and SO2 on the pristine MWCNT, OH-MWCNT, and amine functionalized MWCNT (amine-MWCNT) were measured at two temperatures of 313.2 K and 323.2 K and pressures up to 2.1 bar by a static volumetric method. Capacities of all three types of adsorbents for CO2 adsorption are greater than those of CO2. The performance of amine-MWCNT in adsorpting CO2 is higher than the other two adsorbents. The average saturated capacity of amine-MWCNT for adsorption of pure CO2 at 313.2 K are about 38.6% and 20.8% higher than OH-MWCNT and pristine-MWCNT, respectively. Corresponding values for adsorption of pure CO2 are about 51.3% and 89.65%. Also, the equilibrium adsorption capacity of pristine MWCNT and amine-MWCNT for mixtures for CO2, nitrogen, and water vapor at 299.2 K was obtained. The equilibrium adsorption of CO2 increases as the water content increases in the presence of diluting gas (nitrogen). Freundlich and Langmuir equations were fitted on experimental adsorption isotherms. The Freundlich equation predicts experimental data better than the Langmuir equation. A multi-layer perceptron artificial neural network (ANN) model has been also proposed for predicting adsorption experimental data. The average and maximum difference between experimental data and values predicted by ANN model are about 3% and 24%, respectively.

Graphical Abstract

Adsorption of CO2 and SO2 on multi-walled carbon nanotubes: experimental data and modeling using artificial neural network

Highlights

  • An experimental approach for CO2 and SO2 capturing by using multi-walled carbon nanotubes (MWCNT).
  • Modification of MWCNTs via functionalization and then studied the effects of oxygen and nitrogen functional groups on the adsorption performance of the adsorbents.
  • Designing an ANN model to predict the equilibrium adsorption of CO2 and SO2.
  • Assessment of the ability of an artificial neural network model to predict adsorption experimental data.
  • Comparison of ANN model with well-known adsorption isotherms.

Keywords


[1] J.L. Shelton, J.C. McIntosh, A.G. Hunt, T.L. Beebe, A.D. Parker, P.D. Warwick, R.M. Drake, J.E. McCray, Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers, Int. J. Greenh. Gas Con. 51 (2016) 239-253.
[2] M. Anas, A.G. Gönel, S.E. Bozbag, C. Erkey, Thermodynamics of adsorption of carbon dioxide on various aerogels, J. CO2 Util. 21 (2017) 82-88.
[3] Y. Wang, T. Du, Y. Song, S. Che, X. Fang, L. Zhou, Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture, Solid State Sci. 73 (2017) 27-35.
[4] A. Alonso, J. Moral-Vico, A. Abo Markeb, M. Busquets-Fité, D. Komilis, V. Puntes, A. Sánchez, X. Font, Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane, Sci. Total Environ. 595 (2017) 51-62.
[5] C. Alonso-Moreno, S. García-Yuste, Environmental potential of the use of CO2 from alcoholic fermentation processes. The CO2-AFP strategy, Sci. Total Environ. 568 (2016) 319-326.
[6] S. Fatemi, M. Vesali-Naseh, M. Cyrus, J. Hashemi, Improving CO2/CH4 adsorptive selectivity of carbon nanotubes by functionalization with nitrogen-containing groups, Chem. Eng. Res. Des. 89 (2011) 1669-1675.
[7] A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Flue gas treatment via CO2 adsorption, Chem. Eng. J. 171 (2011) 760-774.
[8] W. Wang, X. Peng, D. Cao, Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: A molecular simulation study, Environ. Sci. Technol. 45 (2011) 4832-4838.
[9] Q. Zhang, Q. Tao, H. He, H. Liu, S. Komarneni, An efficient SO2-adsorbent from calcination of natural magnesite, Ceram. Int. 43 (2017) 12557-12562.
[10] J.M. Rosas, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, Kinetic study of SO2 removal over lignin-based activated carbon, Chem. Eng. J. 307 (2017) 707-721.
[11] J. Li, A. Woodward, X.-Y. Hou, T. Zhu, J. Zhang, H. Brown, J. Yang, R. Qin, J. Gao, S. Gu, J. Li, L. Xu, X. Liu, Q. Liu, Modification of the effects of air pollutants on mortality by temperature: A systematic review and meta-analysis, Sci. Total Environ. 575 (2017) 1556-1570.
[12] B. Wang, Z.H. Gan, Feasibility analysis of cryocooler based small scale CO2 cryogenic capture. Comment on “Energy analysis of the cryogenic CO2 process based on Stirling coolers” Song CF, Kitamura Y, Li SH [Energy, 2014 6(5) 580-89], Energy, 68 (2014) 1000-1003.
[13] G. Zhao, B. Aziz, N. Hedin, Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs, Appl. Energ. 87 (2010) 2907-2913.
[14] S.-C. Hsu, C. Lu, F. Su, W. Zeng, W. Chen, Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes, Chem. Eng. Sci. 65 (2010) 1354-1361.
[15] R. Girimonte, B. Formisani, F. Testa, Adsorption of CO2 on a confined fluidized bed of pelletized 13X zeolite, Powder Technol. 311 (2017) 9-17.
[16] A. Arefi Pour, S. Sharifnia, R. Neishabori Salehi, M. Ghodrati, Adsorption separation of CO2/CH4 on the synthesized NaA zeolite shaped with montmorillonite clay in natural gas purification process, J. Nat. Gas. Sci. Eng. 36 (2016) 630-643.
[17] Y. Kong, L. Jin, J. Qiu, Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites, Sci. Total Environ. 463-464 (2013) 192-198.
[18] F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Sci. Total Environ. 407 (2009) 3017-3023.
[19] T. Kopaç, S. Kocabaş, Adsorption equilibrium and
breakthrough analysis for sulfur dioxide adsorption on silica gel, Chem. Eng. Process. 41 (2002) 223-230.
[20] Y. Lv, X. Yu, S.-T. Tu, J. Yan, E. Dahlquist, Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor, Appl. Energ. 97 (2012) 283-288.
[21] M.M. Gui, Y.X. Yap, S.-P. Chai, A.R. Mohamed, Multi-walled carbon nanotubes modified with (3-aminopropyl)triethoxysilane for effective carbon dioxide adsorption, Int. J. Greenh. Gas Con. 14 (2013) 65-73.
[22] P. Kowalczyk, R. Holyst, Efficient Adsorption of Super Greenhouse Gas (Tetrafluoromethane) in Carbon Nanotubes, Environ. Sci. Technol. 42 (2008) 2931-2936.
[23] A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.N. Golikand, A.Z. Moshfegh, H2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage, Int. J. Hydrogen Energ. 37 (2012) 1919-1926.
[24] A. Somy, M.R. Mehrnia, H.D. Amrei, A. Ghanizadeh, M. Safari, Adsorption of carbon dioxide using impregnated activated carbon promoted by Zinc, Int. J. Greenh. Gas Con. 3 (2009) 249-254.
[25] V. Gaur, A. Sharma, N. Verma, Preparation and characterization of ACF for the adsorption of BTX and SO2, Chem. Eng. Process. 45(1) (2006) 1-13.
[26] X. Zhou, H. Yi, X. Tang, H. Deng, H. Liu, Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber, Chem. Eng. J. 200 (2012) 399-404.
[27] A.I. Sarker, A. Aroonwilas, A. Veawab, Equilibrium and kinetic behaviour of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons, Energy Proced. 114 (2017) 2450-2459.
[28] P. Ammendola, F. Raganati, R. Chirone, CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: Thermodynamics and kinetics, Chem. Eng. J. 322 (2017) 302-313.
[29] Z. Zhao, X. Cui, J. Ma, R. Li, Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents, Int. J. Greenh. Gas Con. 1 (2007) 355-359.
[30] S. Cavenati, C.A. Grande, A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data 49 (2004) 1095-1101.
[31] D. Saha, Z. Bao, F. Jia, S. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A, Environ. Sci. Technol. 44 (2010) 1820-1826.
[32] F. Gholipour, M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling, J. Supercrit. Fluid. 111 (2016) 47-54.
[33] S. Basu, A. Cano-Odena, I.F.J. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations, Sep. Purif. Technol. 81 (2011) 31-40.
[34] R. Sabouni, H. Kazemian, S. Rohani, Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5, Environ. Sci. Technol. 47 (2013) 9372-9380.
[35] Y. Wu, L. Wei, H. Wang, L. Chen, Q. Zhang, First principles study of enhanced CO2 adsorption on MOF-253 by salt-insertion, Comp. Mater. Sci. 111 (2016) 79-85.
[36] H. Wu, C.G. Thibault, H. Wang, K.A. Cychosz, M. Thommes, J. Li, Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF, Micropor. Mesopor. Mat. 219 (2016) 186-189.
[37] H. Deng, H. Yi, X. Tang, Q. Yu, P. Ning, L. Yang, Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites, Chem. Eng. J. 188 (2012) 77-85.
[38] M.G. Plaza, C. Pevida, B. Arias, J. Fermoso, F. Rubiera, J.J. Pis, A comparison of two methods for producing CO2 capture adsorbents, Energy Proced. 1 (2009) 1107-1113.
[39] M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO2 capture by adsorption with nitrogen enriched carbons, Fuel, 86 (2007) 2204-2212.
[40] G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study, J. Supercrit. Fluid. 55 (2010) 510-523.
[41] S.J. Allen, E. Ivanova, B. Koumanova, Adsorption of sulfur dioxide on chemically modified natural clinoptilolite. Acid modification, Chem. Eng. J. 152 (2009) 389-395.
[42] M.G. Plaza, I. Durán, F. Rubiera, C. Pevida, Adsorption-based process modelling for post-combustion CO2 capture, Energy Proced. 114 (2017) 2353-2361.
[43] X. Peng, D. Cao, W. Wang, Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5, Chem. Eng. Sci. 66 (2011) 2266-2276.
[44] X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: A review, Chem. Eng. J. 170 (2011) 395-410.
[45] I. Bertóti, I. Mohai, M. Mohai, J. Szépvölgyi, Surface modification of multi-wall carbon nanotubes by nitrogen attachment, Diam. Relat. Mater. 20 (2011) 965-968.
[46] C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard. Mater. 164 (2009) 923-928.
[47] R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123 (2001) 2058-2059.
[48] S. Agnihotri, M.J. Rood, M. Rostam-Abadi, Adsorption equilibrium of organic vapors on single-walled carbon nanotubes, Carbon, 43 (2005) 2379-2388.
[49] M.D. Ganji, A. Bakhshandeh, Functionalized single-walled carbon nanotubes interacting with glycine amino acid: DFT study, Physica B, 406 (2011) 4453-4459.
[50] E. Dilonardo, M. Penza, M. Alvisi, C. Di Franco, R. Rossi, F. Palmisano, L. Torsi, N. Cioffi, Electrophoretic deposition of Au NPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties, Sensor. Actuat. B-Chem. 223 (2016) 417-428.
[51] Y.-j. Xu, A. Rosa, X. Liu, D.-s. Su, Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions, New Carbon Mater. 26 (2011) 57-62.
[52] R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review, Appl. Energ. 161 (2016) 225-255.
[53] M. Kah, X. Zhang, T. Hofmann, Sorption behavior of carbon nanotubes: Changes induced by functionalization, sonication and natural organic matter, Sci. Total Environ. 497-498 (2014) 133-138.
[54] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres, Carbon, 41 (2003) 1925-1932.
[55] S. Maldonado, S. Morin, K.J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping, Carbon, 44 (2006) 1429-1437.
[56] S. Kundu, W. Xia, W. Busser, M. Becker, D.A. Schmidt, M. Havenith, M. Muhler, The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study, Phys. Chem. Chem. Phys. 12 (2010) 4351-4359.
[57] C. Chen, Y. Huang, Enhanced photoreactivity of amine-functionalized carbon nanotubes under sunlight in the aquatic environment, Sci. Total Environ. 636 (2018) 1577-1584.
[58] F.A. Abdul Kareem, A.M. Shariff, S. Ullah, F. Dreisbach, L.K. Keong, N. Mellon, S. Garg, Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites, J. Nat. Gas. Sci. Eng. 50 (2018) 115-127.
[59] A. Rostami, M.A. Anbaz, H.R. Erfani Gahrooei, M. Arabloo, A. Bahadori, Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm, Egypt. J. Petrol. 27 (2017) 65-73.
[60] B.G. Saucedo-Delgado, D.A. De Haro-Del Rio, L.M. González-Rodríguez, H.E. Reynel-Ávila, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, J. Rivera de la Rosa, Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based equations, J. Fluorine Chem. 204 (2017) 98-106.
[61] A.M. Ghaedi, A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review, Adv. Colloid Interf. Sci. 245 (2017) 20-39.
[62] E. Molyanyan, S. Aghamiri, M.R. Talaie, N. Iraji, Experimental study of pure and mixtures of CO2 and CH4 adsorption on modified carbon nanotubes, Int. J. Environ. Sci. Technol. 13 (2016) 2001-2010.
[63] L. Chen, H. Xie, Y. Li, W. Yu, Surface chemical modification of multiwalled carbon nanotubes by a wet-mechanochemical reaction, J. Nanomater. 2008 (2008) 783981.
[64] L. Niu, Y. Luo, Z. Li, A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol), Sensor. Actuat. B-Chem. 126 (2007) 361-367.
[65] G. Vuković, A. Marinković, M. Obradović, V. Radmilović, M. Čolić, R. Aleksić, P.S. Uskoković, Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes, Appl. Surf. Sci. 255 (2009) 8067-8075.
[66] G.D. Vuković, A.D. Marinković, M. Čolić, M.Đ. Ristić, R. Aleksić, A.A. Perić-Grujić, P.S. Uskoković, Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chem. Eng. J. 157 (2010) 238-248.
[67] Duong D. Do, Adsorption analysis: equilibria and kinetics, Imperial College Press, London, 1998.
[68] X. Li, H. Liu, D. Luo, J. Li, Y. Huang, H. Li, Y. Fang, Y. Xu, L. Zhu, Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation, Chem. Eng. J. 180 (2012) 151-158.
[69] S. Zhang, T. Shao, S.S.K. Bekaroglu, T. Karanfil, The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds, Environ. Sci. Technol. 43 (2009) 5719-5725.
[70] Y.C. Chiang, P.Y. Wu, Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes, J. Hazard. Mater. 178 (2010) 729-738.
[71] P. Orbanić, M. Fajdiga, A neural network approach to describing the fretting fatigue in aluminium-steel couplings, Int. J. Fatigue, 25 (2003) 201-207.
[72] R. Eslamloueyan, M.H. Khademi, A neural network-based method for estimation of binary gas diffusivity, Chemometr. Intell. Lab. 104 (2010) 195-204.
[73] C.S. Lee, W. Hwang, H.C. Park, K.S. Han, Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks, Compos. Sci. Technol. 59 (1999) 1779-1788.
[74] H.S. Rao, A. Mukherjee, Artificial neural networks for predicting the macromechanical behaviour of ceramic-matrix composites, Comp. Mater. Sci. 5 (1996) 307-322.
[75] M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network, Int. J. Heat Mass Tran. 54 (2011) 1017-1023.
[76] Z. Nickmand, S.F. Aghamiri, M.R. Talaie Khozanie, H. Sabzyan, A Monte Carlo simulation of the adsorption of CO2 and SO2 gases in pure and functionalized single walled carbon nanotubes, Sep. Sci. Technol. 49 (2014) 499-505.