[1] J.E. Rasthal, T.E. Drennen, Pathways to a hydrogen future, 3rd ed., Elsevier, London, 2007.
[2] D. Rahm, Sustainable energy and the states, essay on politics markets and leadership, 1st ed., McFarland, North Carolina, 2002.
[3] A.H. Abedin, A critical review of thermochemical energy storage, The open Renewable Energy, 4 (2011) 42-46.
[4] Thermal energy storage. 2013. Available from: http:// www.irena.org/publications.
[5] G. Karagiannakis, C. Pagkoura, E. Halevas, P. Baltzopoulou, A.G. Konstandopoulos, Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations, Sol. Energy, 133 (2016) 394-407.
[6] D. Lefebvre, F.A. Tezel, A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications, Renew. Sust.. Energ. Rev. 67 (2017) 116-125.
[7] U.S. Department of Energy, Thermochemical heat storage for concentrated solar power, General atomic project 30314, 2008.
[8] A. Carrillo, J. Moya, A. Bayon, P. Jana, V.A. de la Pena O Shea, M. Romero, J. Gonzalez-Aguilar, D.P. Serrano, P. Pizarro, J.M. Coronado, Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed oxides, Sol. Energ. Mat. Sol. C. 123 (2014) 47-57.
[9] M. Neises, S. Tescari, L. de Oliveira, M. Roeb, C. Sattler, B. Wong, Solar-heated rotary kiln for thermochemical energy storage, Sol. Energy, 86 (2012) 3040-3048.
[10] A.D. Pelton, H. Schmalzried, J. Sticher, Thermodynamics of Mn3O4-Co3O4, Fe3O4-Mn3O4, and Fe3O4-Co3O4 spinels by phase diagram analysis, Phys. Chem. 83 (1979) 241-252.
[11] G.M. Kale, S.S. Pandit, K.T. Jacob, Thermodynamics of cobalt (II,III)-oxide (Co3O4) - Evidence of phase-transition, T. Jpn. I. Met. 29 (1988) 125-132.
[12] C.W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS, Thermochim. Acta, 473 (2008) 68-73.
[13] K.N. Hutchings, M. Wilson, P.A. Larsen, R.A. Cutler, Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide, Solid State Ionics, 177 (2006) 45-51.
[14] A.G. Schrader, A.P. Muroyama, P.G. Loutzenhiser, Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: Kinetic analyses, Sol. Energy, 122 (2015) 409-418.
[15] T. Block, N. Knoblauch, M. Schmucker, The cobal-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material, Thermochim. Acta, 577 (2014) 25-32.
[16] A. Hsanvand, MSc Thesis, Study of synergistic effect of mechanical activation and Al2O3 and Y2O3 addition on the thermochemical heat storage properties cobalt oxide, Department of Materials Engineering, Hamedan University of Technology, 2018.
[17] N. Nekokar, M. Pourabdoli, A. Ghaderi Hamidi, D. Uner, Effect of mechanical activation on thermal energy storage properties of Co3O4/CoO system, Adv. Powder Technol. 2 (2018) 333-340.
[18] A. Khawam, D.R. Flanagan, Basics and applications of solid state kinetics, a pharmaceutical perspective, J. Pharm. Sci. 95 (2006) 472-498.
[19] O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th ed., Pergamon Press, Torento, 1979.
[20] D.R. Gaskell, Introduction to the Thermodynamics of Materials, 4th ed., Taylor & Francis, New York, 2003.
[21] N. Nekokar, MSc Thesis, Effect of high energy milling on reduction and oxidation process in Co3O4-Fe2O3 system for thermochemical heat storage, Department of Materials Engineering, Hamedan University of Technology, 2017.
[22] N. Nekokar, M. Pourabdoli, A. Ghaderi Hamidi, Effects of Fe2O3 addition and mechanical activation on thermochemical heat storage properties of the Co3O4/CoO system, J. Part. Sci. Technol. 4 (2018) 13-22.
[23] O.D. Neikov, S. Naboychenko, Handbook of Non-Ferrous Metal Powders, 1st ed., Elsevier, 2008.
[24] Y. Mao, J. Engels, A. Houben, M. Rasinski, J. Steffens, A. Terra, Ch. Linsmeier, J.W. Coenen, The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure, Nucl. Mater. Energy, 10 (2017) 1-8.