[1] H.A. Janssen, Versuche uber Getreidedruck in Silozellen, Zeitschrift des Vereines Deutscher Ingenieure, 39 (1895) 1045-1049.
[2] M.S. Ketchum, The design of walls, bins and grain elevators, The engineering news, Archibald Constable & Co., New York, 1911.
[3] T.M. Knowlton, G.E. Klinzing, J.W. Carson, W.-C. Yang, , The importance of storage, transfer, and collection, Chem. Eng. Prog. 90 (1994) 44-54.
[4] D.M. Walker, An approximate theory for pressures and arching in hoppers, Chem. Eng. Sci. 21 (1966) 975-997.
[5] J.K. Walters, A theoretical analysis of stresses in silos with vertical walls, Chem. Eng. Sci. 28 (1973) 13-21.
[6] R.T. Fowler, J.R. Glastonbury, The flow of granular solids through orifices, Chem. Eng. Sci. 10 (1959) 150-156.
[7] W.A. Beverloo, H.A. Leniger, J. van de Velde, The flow of granular solids through orifices, Chem. Eng. Sci. 15 (1961) 260-269.
[8] I. Oldal, I. Keppler, B. Csizmadia, L. Fenyvesi, Outflow properties of silos: The effect of arching, Adv.Powder Technol. 23 (2012) 290-297.
[9] R.O. Uñac, A.M. Vidales, O.A. Benegas, I. Ippolito, Experimental study of discharge rate fluctuations in a silo with different hopper geometries, Powder Technol. 225 (2012) 214-220.
[10] S.-S. Hsiau, C.-C. Liao, J.-H. Lee, The discharge of fine silica sand in a silo under different ambient air pressures, Phys. Fluids, 24 (2012) 043301.
[11] S.-S. Hsiau, C.-C. Hsu, J. Smid, The discharge of fine silica sands in a silo, Phys. Fluids, 22 (2010). 043306.
[12] C. Perge, M.A. Aguirre, P.A. Gago, L.A. Pugnaloni, D. Le Tourneau, J.-C. Géminard, Evolution of pressure profiles during the discharge of a silo, Phys. Rev. E, 85 (2012) 021303.
[13] I. Zuriguel, A. Garcimartín, D. Maza, L.A. Pugnaloni, J.M. Pastor, Jamming during the discharge of granular matter from a silo, Phys. Rev. E, 71 (2005) 051303.
[14] Y. Yu, H. Saxén, Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres, Adv. Powder Technol. 22 (2011) 324-331.
[15] R. Kobyłka, M. Molenda, DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction, Powder Technol. 256 (2014) 210-216.
[16] L. Fullard, C. Davies, Ejection times from a conical mass flow hopper-coulomb and conical model differences, Appl. Math. Model. 40 (2016) 1494-1505.
[17] K. To, Jamming transition in two-dimensional hoppers and silos, Phys. Rev. E, 71 (2005) 060301.
[18] B.K. Muite, S.F. Quinn, S. Sundaresan, K.K. Rao, Silo music and silo quake: granular flow-induced vibration, Powder Technol. 145 (2004) 190-202.
[19] M. Niedostatkiewicz, M. Wójcik, J. Tejchman, Application of inserts for suppression of coupled dynamic-acoustic effects during confined granular flow in silos, Adv. Powder Technol. 25 (2014) 398-407.
[20] P.C. Arnold, A.S. Kaaden, Reducing hopper wall friction by mechanical vibration, Powder Technol. 16 (1977) 63-66.
[21] A.W. Roberts, O. J. Scott, An investigation into the effects of sinusoidal and random vibrations on the strength and flow properties of bulk solids, Powder Technol. 21 (1978) 45-53.
[22] T.H. Kollmann, J. Tomas, Effect of Applied Vibration on Silo Hopper Design, Particul. Sci. Technol. 20 (2002) 15-31.
[23] H. Takahashi, A. Suzuki, T. Tanaka, Behaviour of a particle bed in the field of vibration I. Analysis of particle motion in a vibrating vessel, Powder Technol. 2 (1968) 65-71.
[24] K. Liffman, G. Metcalfe, P. Cleary, Granular convection and transport due to horizontal shaking," Phys. Rev. Lett. 79 (1997) 4574-4576.
[25] A. Suzuki, H. Takahashi, T. Tanaka, Behaviour of a particle bed in the field of vibration II. Flow of particles through slits in the bottom of a vibrating vessel, Powder Technol. 2 (1968) 72-77.
[26] M.L. Hunt, R.C. Weathers, A.T. Lee, C.E. Brennen, C.R. Wassgren, Effects of horizontal vibration on hopper flows of granular materials, Phys. Fluids, 11 (1999) 68-75.
[27] T.C. Veje, P. Dimon, The dynamics of granular flow in an hourglass, Granul. Matter, 3 (2001) 151-164.
[28] C.R. Wassgren, M.L. Hunt, P.J. Freese, J. Palamara, C.E. Brennen, Effects of vertical vibration on hopper flows of granular material, Phys. Fluids, 14 (2002) 3439-3448.
[29] K. Chen, M.B. Stone, R. Barry, M. Lohr, W. McConville, K. Klein, et al., Flux through a hole from a shaken granular medium, Phys. Rev. E, 74 (2006) 011306.
[30] A. Janda, D. Maza, A. Garcimartín, E. Kolb, J. Lanuza, E. Clément, Unjamming a granular hopper by vibration, Europhys. Lett. 87 (2009) 24002.
[31] C. Mankoc, A. Garcimartín, I. Zuriguel, D. Maza, L.A. Pugnaloni, Role of vibrations in the jamming and unjamming of grains discharging from a silo, Phys. Rev. E, 80 (2009) 011309.
[32] J. Tomas, G. Kache, Micro- and macromechanics of hopper discharge of ultrafine cohesive powder, Int. J. Chem. React. Eng. 10 (2012) A44.
[33] C. Lozano, I. Zuriguel, A. Garcimartín, Stability of clogging arches in a silo submitted to vertical vibrations, Phys. Rev. E, 91 (2015) 062203.
[34] A.J. Matchett, A theoretical model of vibrationally induced flow in conical hopper systems, Chem. Eng. Res. Des. 82 (2004) 85-98.
[35] F.Y. Fraige, P.A. Langston, A.J. Matchett, J. Dodds, Vibration induced flow in hoppers: DEM 2D polygon model, Particuology, 6 (2008) 455-466.
[36] P. Langston, A. Matchett, F. Fraige, J. Dodds, Vibration induced flow in hoppers: continuum and DEM model approaches, Granul. Matter, 11 (2009) 99-113.