Fe3O4@SiO2–SO3H Nanoparticles: An efficient magnetically retrievable catalyst for esterification reactions

Document Type : Research Paper


Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran


In this study, magnetite nanoparticles were obtained from Fe(II) and Fe(III) salts in an alkaline medium. The nanoparticles were then protected from oxidation by a silica shell formed by the sol-gel method using tetraethoxy orthosilicate (TEOS) in an EtOH/H2O mixture. The synthesized Fe3O4@SiO2-SO3H magnetic nanocatalyst was characterized with Fourier transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WXRD), thermal gravimetric analysis (TGA), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), Hammett acidity function and pH analysis as well as Brunauer-Emmett-Teller surface area measurement (SBET). Finally, the esterification reaction of phthalic anhydride, mono- and dicarboxylic acids with various alcohols was chosen to show the catalytic activity of the magnetic nanocatalyst. The reaction conditions were optimized and catalyst recovery was also demonstrated. The nanocatalyst was magnetically separated and reused several times without significant loss of activity. 

Graphical Abstract

Fe3O4@SiO2–SO3H Nanoparticles: An efficient magnetically retrievable catalyst for esterification reactions


  • A Silica-based magnetic acid catalyst has been prepared.
  • Esterification reaction of monoand dicarboxylic acids by the catalyst has been studied.
  • Hammett acidity function has been used for evaluation of the catalyst acidity.


[1] S. Ajaikumar, A. Pandurangan, Esterification of alkyl acids with alkanols over MCM-41 molecular sieves: Influence of hydrophobic surface on condensation reaction, J. Mol. Catal. A-Chem. 266 (2007) 1-10.
[2] A. Ross, Industrial Applications of Organotin Compounds, Ann. N.Y. Acad. Sci. 125 (1965) 107-123. 
[3] A. Mobaraki, B. Movassagh, B. Karimi, Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable  catalyst for the synthesis of α-aminonitriles, ACS Comb. Sci. 16 (2014) 352-358. 
[4] S. Rostamnia, A. Nuri, H. Xin, A. Pourjavadi, S.H. Hosseini, Water dispersed magnetic nanoparticles (H2O-DMNPs) of γ-Fe2O3 for multicomponent coupling reactions: a green, single-pot technique for the synthesis of tetrahydro-4H-chromenes and hexahydroquinoline carboxylates, Tetrahedron Lett. 54 (2013) 3344-3347. 
[5] Y. Li, T. Leng, H. Lin, C. Deng, X. Xu, N. Yao, P. Yang, X. Zhang, Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry, J. Proteome Res. 6 (2007) 4498-4510. 
[6] Y. Mansoori, F.S. Tataroglu, M. Sadaghian, Esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions, Green Chem. 7 (2005) 870-873. 
[7] Y. Mansoori, F. Tataroglu Seyidov, S. Bohlooli, M.R. Zamanloo, G.H. Imanzadeh, Esterification of carboxylic acids and diacids by trialkyl borate under solvent- and catalyst-free conditions, Chinese J. Chem. 25 (2007) 1878-1882. 
[8] M. A. Zolfigol, Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions, Tetrahedron, 57 (2001) 9509-9511. 
[9] S.T. Firdovsi, M. Yagoub, A.E. Parvin, Transesterification reaction of dimethyl terephthalate by 2-ethylhexanol in the presence of heterogeneous catalysts under solvent-free condition, Chinese J. Chem. 25 (2007) 246-249. 
[10] K. Saravanan, B. Tyagi, H.C. Bajaj, Sulfated zirconia: an efficient solid acid catalyst for esterification of myristic acid with short chain alcohols, ‎Catal. Sci. Technol. 2 (2012) 2512-2520. 
[11] A.P. Kumar, J.H. Kim, T.D. Thanh, Y.-I. Lee, Chiral zirconia magnetic microspheres as a new recyclable selector for the discrimination of racemic drugs, J. Mater. Chem. B, 1 (2013) 4909-4915. 
[12] N.E. Leadbeater, M. Marco, Preparation of polymer-supported ligands and metal complexes for use in catalysis, Chem. Rev. 102 (2002) 3217-3274. 
[13] A. Mobaraki, B. Movassagh, B. Karimi, Hydrophobicity-enhanced magnetic solid sulfonic acid: A simple approach to improve the mass transfer of reaction partners on the surface of the heterogeneous catalyst in water-generating reactions, Appl. Catal. A, 472 (2014) 123-133. 
[14] C. Gómez-Polo, A. Gil, S.A. Korili, J.I. Pérez-Landázabal, V. Recarte, R. Trujillano, M.A. Vicente, Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts, J. Magn. Magn. Mater. 316 (2007) e783-e786.
[15] M.B. Gawande, A.K. Rathi, I.D. Nogueira, R.S. Varma, P.S. Branco, Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions, Green Chem. 15 (2013) 1895-1899. 
[16] Z. Wang, D. Wu, G. Wu, N. Yang, A. Wu, Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water, J. Hazard. Mater. 244-245 (2013) 621-627. 
[17] I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J.-F. Fouquenet, S. Cohen-Jonathan, M. Souce, H. Marchais, P. Dubois, Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy, Analyst, 130 (2005) 1395-1403. 
[18] M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, A magnetically recyclable nanocomposite catalyst for olefin epoxidation, Angew. Chem. Int. Edit. 46 (2007) 7039-7043. 
[19] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110. 
[20] V.V. Costa, M.J. Jacinto, L.M. Rossi, R. Landers, E.V. Gusevskaya, Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles, J. Catal. 282 (2011) 209-214. 
[21] F. Nemati, M.M. Heravi, R. Saeedi Rad, Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid goups as a magnetically separable catalyst for highly efficient Knoevenagel condensation and Michael addition reactions of aromatic aldehydes with 1,3-cyclic diketones, Chinese J. Catal. 33 (2012) 1825-1831. 
[22] H. Naeimi, Z. Nazifi, A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives, J. Nanopart. Res. 15 (2013) 1-11. 
[23] H. Naeimi, S. Mohamadabadi, Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions, Dalton T. 43 (2014) 12967-12973.
[24] J. Safari, Z. Zarnegar, A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols, J. Mol. Catal. A-Chem. 379 (2013) 269-276. 
[25] A.R. Kiasat, J. Davarpanah, Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones, J. Mol. Catal. A-Chem. 373 (2013) 46-54. 
[26] A. Khorshidi, S. Shariati, Sulfuric acid functionalized MCM-41 coated on magnetite nanoparticles as a recyclable core-shell solid acid catalyst for three-component condensation of indoles, aldehydes and thiols, RSC Adv. 4 (2014) 41469-41475. 
[27] W.L.F. Armarego, C.L.L. Chai, Purification of laboratory chemicals, 6th ed., Butterworth-Heinemann, Elsevier Inc., Burlington, 2009.  
[28]   W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interf. Sci. 26 (1968) 62-69. 
[29] F.T. Sejidov, Y. Mansoori, N. Goodarzi, Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition, J. Mol. Catal. A-Chem. 240 (2005) 186-190. 
[30]  J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Res. 10 (1938) 457-512. 
[31]  A. Guinier, X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Courier Dover Publications, New York, 2013.
[32] A. Amoozadeh, S. Rahmani, M. Bitaraf, F.B. Abadi, E. Tabrizian, Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: a new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions, New J. Chem. 40 (2016) 770-780. 
[33] H. Cao, J. He, L. Deng, X. Gao, Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method, Appl. Surf. Sci. 255 (2009) 7974-7980. 
[34] M. Pooresmaeil, Y. Mansoori, M. Mirzaeinejad, A.L.I. Khodayari, Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly(acrylic acid), Adv. Polym. Tech. 37 (2016) 262-274.
[35] J. Choubey, A.K. Bajpai, Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin, J. Mater. Sci.-Mater. M. 21 (2010) 1573-1586.
[36] H. Xing, T. Wang, Z. Zhou, Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity-catalytic activity relationships, J. Mol. Catal. A-Chem. 264 (2007) 53-59. 
[37] P. Tayeb Oskoie, Y. Mansoori, Fe3O4@ZrO2-SO3H Nanoparticles: A new magnetically retrievable catalyst for esterification of mono- and dicarboxylic acids, J. Part. Sci. Technol. 4 (2018) 1-12. 
[38] G. Van der Waal, Ester base fluids, Unichem International, Gouda, The Netherlands, 1995. 
Volume 4, Issue 2
October 2018
Pages 67-79
  • Receive Date: 06 March 2018
  • Revise Date: 26 September 2018
  • Accept Date: 20 October 2018
  • First Publish Date: 20 October 2018