[1] W. Beckmann, Crystallization: Basic Concepts and Industrial Applications, Wiley-VCH; 2013.
[2] S. Prabhu, E.K. Poulose, Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett. 2 (2012) 32-36.
[3] P.E.J. Saloga, C. Kästner, A.F. Thünemann, High-speed but not magic: Microwave-assisted synthesis of ultra-small silver nanoparticles, Langmuir, 34 (2018) 147-153.
[4] Ö. Karhan, Ö.B. Ceran, O.N. Şara, B. Şimşek, Response surface methodology based desirability function approach to investigate optimal mixture ratio of silver nanoparticles synthesis process, Ind. Eng. Chem. Res. 56 (2017) 8180-8189.
[5] X.-W. Han, X.-Zh. Meng , J. Zhang, Ji.-X. Wang, H.-F. Huang, X.-F.,Zeng, J.-F. Chen, Ultrafast synthesis of silver nanoparticle decorated graphene oxide by a rotating packed bed reactor, Ind. Eng. Chem. Res. 55 (2016) 11622-11630.
[6] G. Zhang, Y. Liu, X. Gao, Y. Chen, Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles, Nanoscale Res. Lett. 9 (2014) 216-220.
[7] C.Y. Tai, W.C. Chein, J.P. Hsu, Induction period of CaCO3 interpreted by the Smoluchowski''''''''s coagulation theory, AIChE J. 51 (2005) 480-486.
[8] R.Y. Qian, G.D. Botsaris, A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces, Chem. Eng. Sci. 52 (1997) 3429-3440.
[9] S. Das, J. Das, A. Samadder, S.S. Bhattacharyya, D. Das, A.R. Khuda-Bukhsh, Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells, Colloid Surface B, 101 (2013) 325-336.
[10] C.Y. Tai, W.C. Chein, Interpreting the effects of operating variables on the induction period of CaCl2-Na2CO3 system by a cluster coagulation model, J. Chem. Eng. Sci., 58, (2003), 3233-3241.
[11] H. Zhang, J.A. Smith, V. Oyanedel-Craver, The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers, Water Res. 146 (2012) 691-699.
[12] P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 12 (1996) 788-800.
[13] L. Sintubin, W. De-Windt, J. Dick, J. Mast, D. van der Ha, W. Verstraete, N. Boon, Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles, Appl. Microbiol. Biot. 84 (2009) 741-749.
[14] M.M. Reddy, A. Hoch, Calcite Crystal Growth Rate Inhibition by Polycarboxylic Acids, J. Colloid Interf. Sci. 235 (2001) 365-370.
[15] K.V. Rajendran, R. Rajasekaran, D. Jayarman, Experimental determination of metastable zonewidth, induction period, interfacial energy and growth of non-linear optical l-HFB single crystals, Mater. Chem. Phys. 81 (2002) 50-55.