[1] D.I. Ryabchikov, E.K. Gol'braikh, The Analytical Chemistry of Thorium, Pergamon Press, Oxford, 1963.
[2] G.R. Choppin, Actinide speciation in the environment, Radiochim. Acta, 91 (2003) 645-650.
[3] J.D. Van Horn, H. Huang, Uranium(VI) biocoordination chemistry from biochemical, solution and protein structural data, Coord. Chem. Rev. 250 (2006) 765-775.
[4] A.R. Keshtkar, M. Irani, M.A. Moosavian, Removal of uranium(VI) from aqueous solutions by adsorption using a novel electrospun PVA/TEOS/APTES hybrid nanofiber membrane: comparison with casting PVA/ TEOS/APTES hybrid Membrane,J. Radioanal. Nucl. Ch. 295 (2013) 563-571.
[5] M. Metaxas, V. Kasselouri-Rigopoulou, P. Galiatsatou, C. Konstantopoulou, D. Oikonomou, Thorium removal by different adsorbents, J. Hazard. Mater. 97 (2003) 71-82.
[6] Z. Hongxia, D. Zheng, T. Zuyi, Sorption of thorium (IV) ions on gibbsite: effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid, Colloid. Surface. A, 278 (2006) 46-52.
[7] A. Hamta, M.R. Dehghani, Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals, J. Mol. Liq. 231 (2017) 20-24.
[8] S. Chandramouleeswaran, J. Ramkumar, V. Sudarsan, A.V.R. Reddy, Boroaluminosilicate glasses: novel sorbents for separation of Th and U, J. Hazard. Mater. 198 (2011) 159-164.
[9] J. Ramkumar, S. Chandramouleeswaran, V. Sudarsan, R.K. Vatsa, S. Shobha, V.K. Shrikhande, G.P. Kothiyal, T. Mukherjee, Boroaluminosilicate glasses as ion exchange materials, J. Non-Cryst. Solids, 356 (2010) 2813-2819.
[10] A. Dyer, L.C. Jozefowicz, The removal of thorium from aqueous solutions using zeolites, J. Radioanal. Nucl. Ch. 159 (1992) 47-62.
[11] L. Weijuan, T. Zuyi, Comparative study on Th(IV) sorption on alumina and silica fromaqueoussolutions, J. Radioanal. Nucl. Ch. 254 (2002) 187-192.
[12] A. Nilchi, T. Shariati Dehaghan, S. Rasouli Garmarodi, Kinetics, isotherm and thermodynamics for uraniumand thoriumions adsorption fromaqueous solutions by crystalline tin oxide nanoparticles, Desalination, 321 (2013) 67-71.
[13] S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Preparation of a novel electrospun polyvinyl alcohol/ titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution, Chem. Eng J. 220 (2013) 161-171.
[14] J.S.Kentish,G.W.Stevens,Innovationsin separation technology for the recycling and re-use of liquid waste streams, Chem. Eng. J. 84 (2001) 149-159.
[15] A.A. Khan and R.P. Singh, Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+ , Na+ and Ca2+ forms, Colloid. Surface. A, 24 (1987) 33-42.
[16] C.H. Lee, J.S. Kim, M.Y. Suh, W. Lee, A chelating resin containing 4-(2- thiazolylazo) resorcinol as the functional group synthesis and sorption behaviours for trace metal ions, Anal. Chim. Acta, 339 (1997) 303-312.
[17] J.P. Rawat, K.P.S. Muktawat, Thermodynamics of ion-exchange on ferric antimonite, J. Inorg. Nucl. Chem. 43 (1981) 2121-2128.
[18] D.C. Sherrington, Preparation, structure and morphology of polymer supports, Chem. Commun. 21 (1998) 2275-2286.
[19] J.H. Song, K.H. Yeon, S.H. Moon, Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI), J. Membrane Sci. 291 (2007) 165-171.
[20] J.S. Park, J.H. Song, K.H. Yeon, S.H. Moon, Removal of hardness ion from tap water using electromembrane processes, Desalination, 202 (2007) 1-8.
[21] H.J. Lee, M.K. Hong, S.H. Moon, A feasibility study on water softening by electrodeionization with the periodic polarity change, Desalination, 284 (2012) 221-227.
[22] T. Ho, A. Kurup, T. Davis, J. Hestekin, Wafer chemistry and properties for ion removal by wafer enhanced electrodeionization, Sep. Sci. Technol. 45 (2010) 433-446.
[23] K. Dermentzis, Continuous electrodeionization through electrostatic shielding, Electrochim. Acta, 53 (2008) 2953-2962.
[24] B.N. Singh, B. Maiti, Separation and preconcentration of U(VI) on XAD-4 modified with 8-hydroxy quinoline, Talanta, 69 (2006) 393-396.
[25] S. Chandramouleeswaran, Jayshree Ramkumar, n-Benzoyl-n-phenylhydroxylamine impregnated Amberlite XAD-4 beads for selective removal of thorium, J. Hazard. Mater. 280 (2014) 514-523.
[26] A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan, Adsorption of Cu(II), Zn(II), Ni(II), Pb(II) and Cd(II) from aqueous solution on Amberlite IR120 synthetic resin, J. Colloid Interf. Sci. 282 (2005) 20-25.
[27] F. Semnani, Z. Asadi, M. Samadfam, H. Sepehrian, Uranium(VI) sorption behavior onto amberlite CG400 anion exchange resin:Effects of pH, contact time, temperature and presence of phosphate, Ann. Nucl. Energy, 48 (2012) 21-24.
[28] S. Rengaraj, K.H. Yeon, S.Y. Kang, J.U. Lee, K.W. Kim, S.H. Moon, Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin, J. Hazard. Mater. 92 (2002) 185-198.
[29] M. Singh, A. Sengupta, Sk. Jayabun, T. Ippili. Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ionexchange and solvation mechanism, J. Radioanal. Nucl. Ch. 311 (2017) 195-208.
[30] M. Elibol, D. Ozer, Response surface analysis of lipase production by freely suspended Rhizopus arrhizus, Process Biochem. 38 (2002) 367-372.
[31] M. Gavrilescu, Removal of heavy metals from the environment by biosorption, Eng. Life Sci. 4 (2004) 219-232.
[32] F. Ghorbani, H. Younesi, S.M. Ghasempouri, A.A. Zinatizadeh, M. Amini, A. Daneshi, Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by saccharomyces serevisiae, Chem. Eng. J. 145 (2008) 267-275.
[33] V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113, J. Hazard. Mater. 186 (2011) 891-901.
[34] V.K. Gupta, A. Mittal, A. Malviya, and J. Mittal, Adsorption of carmoisine a from waste materialsbottom ash and deoiled soya, J. Colloid. Interface Sci., 355 (2009) 24–33.
[35] T.S. Anirudhan, S. Jalajamony, Ethylthiosemicarbazide intercalated organophilic calcined hydrotalcite as a potential sorbent for the removal of uranium(VI) and thorium(IV) ions from aqueous solutions, J. Env. Sci. 25 (2013) 717-725.
[36] G.H. Mirzabe, A.R. Keshtkar, Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent, J. Ind. Eng. Chem. 26 (2015) 277-285.
[37] T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium(IV) from aqueous solution using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies, Colloid. Surface. A, 368 (2010) 13-22.
[38] I. Langmuir, The constitution and fundamental properties of solids and liquids. part I. solids, J. Am. Chem. Soc. 38 (1916) 2221-2295.
[39] Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.