[1] G. Zhu, H. Li, S. Li, X. Hou, D. Xu, R. Lin, Q. Tang, Crystallization behavior and kinetics of calcium carbonate in highly alkaline and supersaturated system, J. Cryst. Growth, 428 (2015) 16-23.
[2] T. Stirnimann, S. Atria, J. Schoelkopf, P.A. Gane, R. Alles, J. Huwyler, M. Puchkov, Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface, Int. J. Pharm. 466 (2014) 266-275.
[3] C. Bacher, P. Olsen, P. Bertelsen, J. Kristensen, J. Sonnergaard, Improving the compaction properties of roller compacted calcium carbonate, Int. J. Pharm. 342 (2007) 115-123.
[4] T. Paseephol, D.M. Small, F. Sherkat, Lactulose production from milk concentration permeate using calcium carbonate-based catalysts, Food Chem. 111 (2008) 283-290.
[5] H. Zhang, J. Chen, H. Zhou, G. Wang, J. Yun, Preparation of nano-sized precipitated calcium carbonate for PVC plastisol rheology modification, J. Mater. Sci. 21 (2002) 1305-1306.
[6] M. Di Lorenzo, M. Errico, M. Avella, Thermal and morphological characterization of poly (ethylene terephthalate)/calcium carbonate nanocomposites, J. Mater. Sci. 37 (2002) 2351-2358.
[7] J. Gullichsen, C-J. Fogelholm, Papermaking science and technology book 6A: chemical pulping, Finish Paper Engineers Association and TAPPI, Finland, 1999.
[8] C. Petersen, C. Heldmann, D. Johannsmann, Internal stresses during film formation of polymer latices, Langmuir, 15 (1999) 7745-7751.
[9] F. He, J. Zhang, F. Yang, J. Zhu, X. Tian, X. Chen, In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials, Mater. Sci. Eng. C. 50 (2015) 257-265.
[10] L. Simão, R. Caldato, M. Innocentini, O. Montedo, Permeability of porous ceramic based on calcium carbonate as pore generating agent, Ceram. Int. 41 (2015) 4782-4788.
[11] C. Nover, H. Dillenburg, US Patent No. 0276897A1, (issued Dec. 15, 2005).
[12] J.B. Foster, EP Patent No. 1790616A1, (issued May. 30, 2007).
[13] J.B. Foster, EP Patent No. 1790616B1, (issued Mar. 9, 2011).
[14] S. Teir, S. Eloneva, R. Zevenhoven, Production of precipitated calcium carbonate from calcium silicates and carbon dioxide, Energ. Convers. Manage. 46 (2005) 2954-2979.
[15] T. Vehmas, U. Kanerva, E. Holt, Spray-Dry Agglomerated Nanoparticles in Ordinary Portland Cement Matrix, Mater. Sci. Appl. 5 (2014) 837-844.
[16] M. Markowski, I. Białobrzewski, A. Modrzewska, Kinetics of spouted-bed drying of barley: Diffusivities for sphere and ellipsoid, J. Food Eng. 96 (2010) 380-387.
[17] N. Epstein, J.R. Grace, Spouted and spout-fluid beds: fundamentals and applications, Cambridge University Press, 2010.
[18] A.D.A. Araújo, R.M. Coelho, C.P.M. Fontes, A.R.A. Silva, J.M.C. da Costa, S. Rodrigues, Production and spouted bed drying of acerola juice containing oligosaccharides, Food Bioprod. Process. 94 (2015) 565-571.
[19] Z.L. Arsenijević, Z.B. Grbavcić, R.V. Garić-Grulović, Drying of suspensions in the draft tube spouted bed, Can. J. Chem. Eng. 82 (2004) 450-464.
[20] S. Tia, C. Tangsatitkulchai, P. Dumronglaohapun, Continuous drying of slurry in a jet spouted bed, Drying Technol. 13 (1995) 1825-1840.
[21] K. Mathur, N. Epstein, Spouted Beds, Academic Press, New York, 1974.
[22] F.G. Cunha, K.G. Santos, C.H. Ataíde, N. Epstein, M.A. Barrozo, Annatto powder production in a spouted bed: an experimental and CFD study, Ind. Eng. Chem. Res. 48 (2008) 976-982.
[23] Z.B. Grbavcic, Z.L. Arsenijevic, R.V. Garic-Grulovic, Drying of slurries in fluidized bed of inert particles, Drying Technol. 22 (2004) 1793-1812.
[24] M. Passos, A. Mujumdar, Effect of cohesive forces on fluidized and spouted beds of wet particles, Powder Technol. 110 (2000) 222-238.
[25] M. Passos, G. Massarani, J. Freire, and A. Mujumdar, Drying of pastes in spouted beds of inert particles: Design criteria and modeling, Drying Technol., 15 (1997) 605-624.
[26] T. Kudra, A.S. Mujumdar, Advanced drying technologies, Second Ed. CRC Press, 2009.
[27] T. Schneider, J. Bridgwater, The stability of wet spouted beds, Drying Technol. 11 (1993) 277-301.
[28] Q. Guo, S. Hikida, Y. Takahashi, N. Nakagawa, K. Kato, Drying of microparticle slurry and salt-water solution by a powder-particle spouted bed, J. Chem. Eng. Jpn. 29 (1996) 152-158.
[29] T. Nakazato, Y. Liu, K. Sato, K. Kato, Semi-dry process for production of very fine calcium carbonate powder by a powder-particle spouted bed, J. Chem. Eng. Jpn. 35 (2002) 409-414.
[30] M. Benali M. Amazouz, Effect of Drying Aid Agents on Processing of Sticky Materials, Dev. Chem. Eng. Min. Process. 10 (2002) 401-414.
[31] Z.L. Arsenijević, Ž.B. Grbavčić, R.V. Garić-Grulović, Prediction of the particle circulation rate in a draft tube spouted bed suspension dryer, J. Serb. Chem. Soc. 71 (2006) 401-412.
[32] Z.L. Arsenijević, Ž.B. Grbavčić, R.V. Garić-Grulović, Drying of solutions and suspensions in the modified spouted bed with draft tube, J. Therm. Sci. 6 (2002) 47-70.
[33] A. Almeida, F. Freire, J. Freire, Transient analysis of pasty material drying in a spouted bed of inert particles, Dry. Technol. 28 (2010) 330-340.
[34] S.M. Tasirin, S.K. Kamarudin, J.A. Ghani, K. Lee, Optimization of drying parameters of bird’s eye chilli in a fluidized bed dryer, J. Food Eng. 80 (2007) 695-700.
[35] R. Moreno, G. Antolín, A. Reyes, Thermal behaviour of forest biomass drying in a mechanically agitated fluidized bed, Lat. Am. Appl. Res. 37 (2007) 105-113.
[36] K. Uday, J. Prathyusha, D. Singh, P. Apte, Application of the Taguchi Method in Establishing Criticality of Parameters that Influence Cracking Characteristics of Fine-Grained Soils, Dry. Technol. 33 (2015) 1138-1149.
[37] S.K. Karna, R. Sahai, An overview on Taguchi method, Int. J. Eng. Math. Sci. 1 (2012) 1-7.
[38] S.M. Tasirin, I. Puspasari, L.J. Xing, Z. Yaakob, J.A. Ghani, Energy optimization of fluidized bed drying of orange peel using Taguchi method, World Appl. Sci. J. 26 (2013) 1602-1609.
[39] S. Athreya, Y. Venkatesh, Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation, Int. Ref. J. Eng. Sci. 1 (2012) 13-19.
[40] H.-H. Chen, C.-C. Chung, H.-Y. Wang, T.-C. Huang, Application of Taguchi method to optimize extracted ginger oil in different drying conditions, IPCBEE May, 9 (2011) 310-316.
[41] J. López-Cacho, P.L. González-R, B. Talero, A. Rabasco, M. González-Rodríguez, Robust optimization of alginate-carbopol 940 bead formulations, Sci. World J. (2012) 1-15, Article ID 605610.
[42] M. Perea-Flores, V. Garibay-Febles, J.J. Chanona-Perez, G. Calderon-Dominguez, J.V. Mendez-Mendez, E. Palacios-González, G.F. Gutierrez-Lopez, Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures, Ind. Crops Prod. 38 (2012) 64-71.
[43] E.K. Akpinar, Determination of suitable thin layer drying curve model for some vegetables and fruits, J. Food Eng. 73 (2006) 75-84.
[44] S. Azzouz, A. Guizani, W. Jomaa, A. Belghith, Moisture diffusivity and drying kinetic equation of convective drying of grapes, J. Food Eng. 55 (2002) 323-330.
[45] W.K. Lewis, The Rate of Drying of Solid Materials, Ind. Eng. Chem. 13 (1921) 427-432.
[46] G.E. Page, Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers, M.Sc. Thesis, Purdue University, West Lafayette, 1949.
[47] S. Hendreson, S. Pabis, Grain drying theory. I. Temperature effect on drying coefficients, J. Agr. Eng. Res. 6 (1961) 169-174.
[48] A. Yagcioglu, Drying characteristic of laurel leaves under different conditions, In: A. Bascetincelik (ED.), Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, Adana, Turkey, (1999) 565-569.
[49] A. Balbay, Ö. Şahin, Microwave drying kinetics of a thin-layer liquorice root, Dry. Technol. 30 (2012) 859-864.
[50] G. Dadalı, D. Kılıç Apar, B. Özbek, Microwave drying kinetics of okra, Dry. Technol. 25 (2007) 917-924.
[51] O. Yaldýz, C. Ertekýn, Thin layer solar drying of some vegetables, Dry. Technol. 19 (2001) 583-597.
[52] A. Magalhães, C. Pinho, Spouted bed drying of cork stoppers, Chem. Eng. Process. Process Intensif., 47 (2008) 2395-2401.
[53] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim. 9 (1998) 112-147.
[54] J. Stoer, R. Bulirsch, Introduction to numerical analysis, Second Ed., Springer-Verlag New York, 2013.
[55] M. Satter, Optimization of copra drying factors by Taguchi method, 4th International Conference on Mechanical Engineering, Dhaka, Bangladesh (ICME2001) (2001) III 23-27.
[56] A.S. Mujumdar, Principles, classification, and selection of dryers, Handbook of Industrial Drying, Fourth Ed, CRC Press, 2014.
[57] W. Wagner, A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data. 31 (2002) 387-535.