[1] D.M. Phillips, L.F. Drummy, D.G. Conrady, D.M. Fox, R.R. Naik, M.O. Stone, P.C. Trulove, H.C. De Long, R.A. Mantz, Dissolution and regeneration Bombyx mori Silk fibroin using ionic liquids, J. Am. Chem. Soc. 126 (2004) 14350-14351.
[2] H.J. Jin, J. Park, R. Cebe, P. Valluzzi, D.L. Kaplan, Biomaterial films of Bom-byx mori silk fibroin with poly(ethylene oxide), Biomacromolecules 5 (2004) 711-717.
[3] G. Arai, G.M. Colonna, E. Scotti, A. Boschi, R. Murakami, M.T. Tsukada, Absorption of metal cations by modified B. mori silk and preparation of fabrics with antimicrobial activity, J. Appl. Polym. Sci. 80 (2001) 297-303.
[4] V. Scognamiglio, Nanotechnology in glucose monitoring: advances and challenges in the last 10 years, Biosens. Bioelectron. 47 (2013) 12-25.
[5] Z.S. Lu, C.X. Guo, H.B. Yang, Y. Qiao, J. Guo, C.M. Li, One-step aqueous synthesis of graphene-CdTe quantum dot-composed nanosheet and its enhanced photoresponses, J. Colloid Interf. Sci. 353 (2011) 588-592.
[6] Z.S. Lu, W.H. Hu, H.F. Bao, Y. Qiao, C.M. Li, Interaction mechanisms of CdTe quantum dots with proteins possessing different isoelectric points, Med. Chem. Commun. 2 (2011) 283286.
[7]Z.S.Lu,C.M.Li,Quantumdot-basednanocomposites for biomedical applications, Curr. Med. Chem. 18 (2011) 3516-3528.
[8] Z.S. Lu, C.M. Li, H.F. Bao, Y. Qiao, Q.L. Bao, Photophysical mechanism for quantum dots- induced bacterial growth inhibition, J. Nanosci. Nanotechnol. 9 (2009) 3252-3255.
[9] Z.S. Lu, C.M. Li, H.F. Bao, Y. Qiao, Y. Toh, X. Yang, Mechanism of antimicrobial activity of CdTe quantum dots, Langmuir 24 (2008) 5445-5452.
[10] E. Amato, Y.A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J.M. Fernandez-Hechavarria, Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles, Langmuir 27 (2011) 9165-9173.
[11] L.Y. Guo, W.Y. Yuan, S. Lu, C.M. Li, Polymer/ nanosilver composite coatings for antibacterial applications, Colloid Surface A 439 (2013) 69-83.
[12] W.D. Yu, T. Kuzuya, S. Hirai, Y. Tamada, K. Sawada, T. Iwasa, Preparation of Ag nanoparticle dispersed silk fibroin compact, Appl. Surf. Sci. 262 (2012) 212-217.
[13] L. He, S.Y. Gao, H. Wu, X.P. Liao, Q. He, B. Shi, Antibacterial activity of silver nanoparticles stabilized on tannin grafted collagen fiber, Mater. Sci. Eng. C 32 (2012) 1050-1056.
[14]J.J. Wu, G.J. Lee, Y.S. Chen, T.L. Hu, The synthesis of nano silver/polypropylene plasticsfor antibacterial application, Curr. Appl. Phys. 12 (2012) S89-S95.
[15] R. Bhattacharya, P. Mukherjee, Biological properties of “naked” metal nanoparticles, Adv. DrugDeliver. Rev. 60 (2008) 1289-1306.
[16] S. Shahidi and J. Wiener, Antimicrobial AgentsChapter 19: Antibacterial Agents in Textile Industry; InTech: Rijeka, Crotia, 2012, pp. 387-406.
[17] Y. Gao, R. Cranston, Recent advances in antimicrobial treatments of textiles, Text. Res. J. 78 (2008) 60-72.
[18]J. Hasan, R.J. Crawford, E.P. Ivanova,Antibacterial surfaces: The quest for a new generation of biomaterials, Trends Biotechnol. 31 (2013) 295-304.
[19] B. Simoncic, B. Tomsic, Structures of novel antimicrobial agents for textiles-A review, Text. Res. J. 80 (2010) 1721-1737.
[20] H. Palza, Antimicrobial polymers with metal nanoparticles, Int. J. Mol. Sci. 16 (2015) 2099-2116.
[21] D. Zhang, G.W. Toh, H. Lin, Y.Y. Chen, In situ synthesis of silver nanoparticles on silk fabric with PNP for antibacterial finishing, J. Mater. Sci. 47 (2012) 5721-5728.
[22] S. Tangbunsuk, G.R. Whittell, M.G. Ryadnov, G.W.M. Vandermeulen, D.N. Woolfson, I. Manners, Metallopolymer-peptide hybrid materials: Synthesis andSelf-AssemblyofFunctional,PolyferrocenylsilaneTetrapeptide Conjugates, Chem.-Eur. J. 18 (2012) 2524-2535.
[23] X.M. Wang, W.R. Gao, S.P. Xu, W.Q. Xu, Luminescent fibers: in situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity, Chem. Eng. J. 210 (2012) 585-589.
[24] A.R. Abbasi, A. Morsali, Influence of various reduction reagents on the morphological properties of Ag nanoparticles@silk fiber prepared using sonochemical method, J. Inorg. Organomet. P. 21 (2011) 369-375.
[25] S.T. Dubas, P. Kimlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers, Colloid. Surface. A 289 (2006) 105-109.
[26] P. Gupta, M. Bajpai, S.K. Bajpai, Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric, J. Cotton Sci. 12 (2008) 280-286.
[27] M. Mirjalili, N. Yaghmaei1, M. Mirjalili, Antibacterial properties of nano silver finish cellulose fabric, J. Nanostruct. Chem. 3 (2013) 43.
[28] A.I. Wasif, S.K. Laga, Use of nano silver as an antimicrobial agent for cotton, AUTEX Res. J. 9 (2009) 5-13.
[29] IAEA: Elemental analysis of biological materials, International Atomic Energy Agency (IAEA), Vienna, Technical Reports series No. 197 (1980) 379.
[30] Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Ninth Edition, Clinical and Laboratory Standards Institute document M2-A9 (ISBN 1-56238-586-0), 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2006.
[31] I. Perelshtein, G.Applerot, N. Perkas, Sonochemical coating ofsilver nanoparticles on textile fabrics(nylon, polyester and cotton) and their antibacterial activity and their antibacterial activity , Nanotechnology 19 (2008) 245705.
[32] B. Liu, W.Z. Chen, S.W. Jin, Synthesis, structural characterization, and luminescence of new silver aggregates containing shortAg-Ag contactsstabilized by functionalized bis (N-heterocyclic carbene) ligands, Organometallics 26 (2007) 3660-3667.
[33] Q. Lu, X. Hu, X.Q. Wang, J.A. Kluge, S.Z. Lu, P. Cebe, D.L. Kaplan, Water-insoluble silk films with silk I structure, Acta Biomater., 6 (2010) 1380-1387.
[34] X. Zou, E. Ying, S. Dong, Preparation of novel silver gold bimetallic nanostructures by seeding with silver nanoplates and application in surface enhanced Raman scattering, J. Colloid Interf. Sci. 306 (2007) 307-315.
[35] X.X. Feng, L.L. Zhang, J.Y. Chen, Y.H. Guo, H.P. Zhang, C.I. Jia, Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2, Int. J. Biol. Macromol. 40 (2007) 105-111.
[36] L. Piao, K.H. Lee, B.K. Min, W. Kim, Y.R. Do, S. Yoon, A facile synthetic method of silver nanoparticles with a continuous size range from sub10 nm to 40 nm, Bull. Korean Chem. Soc. 32 (2011) 117-121.
[37] F. Chen, Y. Liu, R.E. Wasylishen, Z.H. Kuznicki, Solid-state NMR and TGA studies of silver reduction in chabazite, J. Nanosci. Nanotechno. 12 (2012) 1988-1993.
[38] M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S.AlSalhi, Structural and thermalstudies of silver nanoparticles and electrical transport study of their thin film, Nanoscale Res. Lett. 6 (2011) 434.
[39] S.A. Khan, A. Ahmad, M.I. Khan, M. Yusuf, M. Shahid, N. Manzoor, F. Mohammad, Antimicrobial activity of wool yarn dyed with Rheum emodi L. (Indian Rhubarb), Dyes Pigments 95 (2012) 206-214.