[1] M. Sopicka-Lizer, High-energy ball milling: Mechanochemical processing of nanopowders, Woodhead, New York, 2010.
[2] A. Nazari, M. Zakeri, Modeling the mean grain size ofsynthesized nanopowders produced by mechanical alloying, Ceram. Int. 39 (2013) 1587-1596.
[3] B. Nasiri-Tabrizi, A. Fahami, R. EbrahimiKahrizsangi, J. Ind. Eng. Chem. 20 (2014) 245-258.
[4] M. Abdellahi, M. Bahmanpour, A novel technology for minimizing the synthesis time of nanostructured powders in planetary mills, Mater. Res. 17 (2014) 781-791.
[5] M.S. Khoshkhoo, S. Scudino, T. Gemming, J. Thomas, J. Freudenberger, M. Zehetbauer, C. Koch, , J. Eckert, Nanostructure formation mechanism during in-situ consolidation of copper by room temperature ball milling, Mater. Desgin 65 (2015) 1083-1090.
[6] J.S. Benjamin, Mechanical alloying-A perspective, Metal Powder Report. 45 (1990) 122-127.
[7] M.S. El-Asfoury, M.N. Nasr, A. Abdel-Moneim, Effect of Friction on Material Mechanical Behaviour in Non-equal Channel Multi Angular Extrusion (NECMAE), in Book of Abstracts, 2015, pp. 364.
[8] T.P. Yadav, R.M. Yadav, D.P. Singh, Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites, Nanosci. Nanotech. 2 (2012) 22-48.
[9] M. Zandrahimi, M.D. Chermahini, M. Mirbeik, The effect of multi-step milling and annealing treatments on microstructure and magnetic properties ofnanostructured Fe-Si powders, J. Mag. Mag. Mater. 323 (2011) 669-674.
[10] J. Ding, P. McCormick, R. Street, Structure and magnetic properties of mechanically alloyed SmxFe100-x nitride, J. Alloy. Compd. 189 (1992) 83-86.
[11] J. Ding, W.F. Miao, P.G. McCormick, R. Street, Mechanochemical synthesis of ultrafine Fe powder, Appl. Phys. lett. 67 (1995) 3804-3806.
[12] M. Abdellahi, H. Bahmanpour, M. Bahmanpour, The best conditions forminimizing the synthesis time of nanocomposites during high energy ball milling: Modeling and optimizing, Ceram. Int. 40 (2014) 9675-9692.
[13] A. Canakci, S. Ozsahin, T. Varol, Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks, Powder Technol. 228 (2012) 26-35.
[14] L. Vu-Quoc, X. Zhang, L. Lesburg, A normal force-displacement model for contacting spheres accounting for plastic deformation force-driven formulation, J. Appl. Mech. 67 (2000) 363-371.
[15] H. Hertz, Uber die Beruhrung fester elastische Korper and uber die Harts (On the contact of rigid elastic solids and on hardness), Verhandlunger des Vereins zur Beforderung des Gewerbefleisses, Leipzig, Nov. 1882.
[16] R.D. Mindlin, H. Deresiewica, Elastic spheres in contact under varying oblique forces, J. Appl. Mech. 20 (1953) 327-344.
[17] L. Vu-Quoc, X. Zhang, L. Lesburg, Contact force-displacement relations for spherical particles accounting for plastic deformation, Int. J. Solids Struct. 38 (2001) 6455-6490.
[18] O.R. Walton, R.L. Braun, Viscosity, granulartemperature, and stress calculations for shearing assemblies of inelastic, frictional disks, J. Rheol. 30 (1986) 949-980.
[19] W. Goldsmith, Impact, the theory and physical behavior of colliding solids, Edward Arnold Pub., 1960.
[20] C. Thornton, Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres, J. Appl. Mech. 64 (1997) 383-386.
[21] D. Maurice, T.H. Courtney, Modeling of mechanical alloying: Part I. deformation, coalescence, bdand fragmentation mechanisms, Metall. Mater. Trans. A, 25 (1994) 147–158.
[22] D. Maurice, T.H. Courtney, Modeling of mechanical alloying: Part II. development of computational modeling programs, Metall. Mater. Trans. A 26 (1995) 2431-2435.
[23] D. Maurice, T.H. Courtney, Modeling of mechanical alloying: Part III. Applications of computational programs, Metall. Mater. Trans. A 26 (1995) 2437-2444.
[24] H. Mio, J. Kano, F. Saito, K. Kaneko, Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling, Mater. Sci. Eng. A 332 (2002) 75-80.
[25] E. Hryha, P. Zubko, E. Dudrova, L. Pešek, S. Bengtsson, An application of universal hardness test to metal powder particles, J. Mater. Process. Tech. 209 (2009) 2377-2385.
[26] J. Walkenbach, Excel 2013 Formulas, John Wiley & Sons Publisher, 2013, pp. 483.
[27] K. Velten, Mathematical Modeling and Simulation: Introduction for Scientists and Engineers, John Wiley & Sons Publisher, 2009, pp. 69.