Effect of ion concentration on viscosity, electrical conductivity and deposit weight of doped nano alumina prepared by electrophoretic deposition

Document Type : Research Article


1 Advanced Materials & Renewable Energies Department, Iranian Research Organization for Science and Technology, Tehran, Iran

2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran


Viscosity, electrical conductivity and deposit weight were determined for Electrophoretic deposition (EPD) Mg2+-, Y3+-, La3+- and Ce4+-doped alumina's ethanolic suspensions prepared at dopant concentration between 350 to 1350 ppm. The concentration of XCly (X, y were: Mg, 2; Y, 3; Ce, 3 and La, 3, respectively) the charging salt, is also found to be a critical factor to control the viscosity. It is shown that the deposit weight is influenced by precursor concentration, but not by conductivity, viscosity or the pH of the suspension. All two way concentration interactions without Mg2+ and Ce4+ concentration simultaneous change are significantly in analysis of variance (ANOVA) model. The viscosity of suspension reached 2.5 mPa.s with Mg2+-, Y3+-, La3+- and Ce4+- decreased to 100, 100, 100 and 0 ppm in low iodine concentration (400 ppm), due to the most heavily cations that can adsorb to alumina surface with iodine adsorption but lighter Mg2+- cations adsorb under the influence of OH groups excite on alumina surface. The interest in the present study is to achieve a model between viscosity and additive concentration.


[1] S. Dey, S. Bhattacharjee, T.K. Rout, D.K. Sengupta, T. Uchikoshi, L. Besra, Effect of Electrode Reactions during Aqueous Electrophoretic Deposition on Bulk Suspension Properties and Deposition Quality, Key Eng. Mater. 654 (2015) 3–9. doi:10.4028/www.scientific.net/KEM.654.3.
[2] H.C. Hamaker, Formation of a deposit by electrophoresis, Trans. Faraday Soc. 35 (1940) 279–287. doi:10.1039/TF9403500279.
[3] R. Moreno, B. Ferrari, Nanoparticles Dispersion and the Effect of Related Parameters in the EPD Kinetics, in: J.H. Dickerson, A.R. Boccaccini (Eds.), Electrophor. Depos. Nanomater., Springer New York, New York, NY, 2012: pp. 73–128. http://link.springer.com/chapter/10.1007/978-1-4419-9730-2_2 (accessed February 28, 2016).
[4] L. Besra, P. Samantaray, S. Bhattacharjee, B.P. Singh, Electrophoretic deposition of alumina on stainless steel from non-aqueous suspension, J. Mater. Sci. 42 (2007) 5714– 5721. doi:10.1007/s10853-006-0757-5.
[5] T.S. Suzuki, T. Uchikoshi, Y. Sakka, Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field, J. Eur. Ceram. Soc. 29 (2009) 2627–2633. doi:10.1016/j.jeurceramsoc.2009.03.015.
[6] L. Jin, X. Mao, S. Wang, M. Dong, Optimization of the rheological properties of yttria suspensions, Ceram. Int. 35 (2009) 925–927. doi:10.1016/j.ceramint.2008.03.009.
[7] A. Tsetsekou, C. Agrafiotis, A. Milias, Optimization of the rheological properties of alumina slurries for ceramic processing applications Part I: Slip-casting, J. Eur. Ceram. Soc. 21 (2001) 363–373. doi:10.1016/S0955-2219(00)00185-0.
[8] M. Stuer, Z. Zhao, P. Bowen, Freeze granulation: Powder processing for transparent alumina applications, J. Eur. Ceram. Soc. 32 (2012) 2899–2908. doi:10.1016/j.jeurceramsoc.2012.02.038.
[9] S. Heydarian, Z. Ranjbar, S. Rastegar, Electrophoretic Deposition Behavior of Chitosan Biopolymer as a Function of Solvent Type, Polym.-Plast. Technol. Eng. 54 (2015) 1193– 1200. doi:10.1080/03602559.2014.1003226.
[10] A.M. Popa, J. Vleugels, J. Vermant, O. Van der Biest, Influence of surfactant addition sequence on the suspension properties and electrophoretic deposition behaviour of alumina and zirconia, J. Eur. Ceram. Soc. 26 (2006) 933–939. doi:10.1016/j.jeurceramsoc.2004.12.023.
[11] Z. Zhang, Y. Huang, Z. Jiang, Electrophoretic Deposition Forming of SiC-TZP Composites in a Nonaqueous Sol Media, J. Am. Ceram. Soc. 77 (1994) 1946–1949. doi:10.1111/j.1151-2916.1994.tb07075.x.
[12] M. Stuer, P. Bowen, Yield stress modelling of doped alumina suspensions for applications in freeze granulation: towards dry pressed transparent ceramics, Adv. Appl. Ceram. 111 (2012) 254–261. doi:10.1179/1743676111Y.0000000061.
[13] P. Biswas, M. Kiran Kumar, K. Rajeswari, R. Johnson, U.S. Hareesh, Transparent submicrometre alumina from lanthanum oxide doped common grade alumina powder, Ceram. Int. 39 (2013) 9415–9419. doi:10.1016/j.ceramint.2013.05.058.
[14] D.C. Montgomery, Design and Analysis of Experiments, 8th ed., John Wiley & Sons, Inc., New York, 2001.
[15] G. Wang, P. Sarkar, P.S. Nicholson, Influence of Acidity on the Electrostatic Stability of Alumina Suspensions in Ethanol, J. Am. Ceram. Soc. 80 (2005) 965–972. doi:10.1111/j.1151-2916.1997.tb02928.x. 17
[16] B. Workie, B.E. McCandless, Z. Gebeyehu, Electrophoretic Deposition of Aluminum Nitride from Its Suspension in Acetylacetone Using Iodine as an Additive, J. Chem. 2013 (2013) 1–7. doi:10.1155/2013/489734.
[17] H. Idriss, Ethanol Reactions over the Surfaces of Noble Metal/Cerium Oxide Catalysts, Platin. Met. Rev. 48 (2004) 105–115. doi:10.1595/147106704X1603.
[18] P. Kostetskyy, G. Mpourmpakis, Structure-activity relationships in the production of olefins from alcohols and ethers: a first-principles theoretical study, Catal. Sci. Technol. 5 (2015) 4547–4555. doi:10.1039/C5CY00925A.
[19] S. Novak, K. König, Fabrication of alumina parts by electrophoretic deposition from ethanol and aqueous suspensions, Ceram. Int. 35 (2009) 2823–2829. doi:10.1016/j.ceramint.2009.03.033.
[20] M. Milani, S.M. Zahraee, S.M. Mirkazemi, INFLUENCE OF ELECTROPHORETIC DEPOSITION PARAMETERS ON PORE SIZE DISTRIBUTION OF DOPED NANO ALUMINA PLATES, Ceram. - Silik. 60 (2016) 299–307. doi:10.13168/cs.2016.0045.
[21] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61. doi:10.1016/j.pmatsci.2006.07.001.