Synthesis of pure monoclinic zirconia nanoparticles using ultrasound cavitation technique

Document Type : Research Paper


1 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

2 Department of Chemistry, Faculty of Sciences, Damghan University, Damghan, Iran


In the current study, synthesis and characterization of a new nano-structured zirconium(IV)-minoxidil complex (1), where minoxidil, (C9H15N5O; 6-(1-Piperidinyl)-2,4-pyrimidinediamine 3-oxide), have been investigated in two different solvents. The compound 1 has been synthesized by sonochemical method in the presence of methanol and monoethylene glycol (MEG) as solvents and characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. The thermal stability of the compound 1 has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Pure monoclinic (m) zirconia (ZrO2) nanoparticles were readily synthesized from thermal decomposition of the compound 1 as a new precursor in both solvents. The products were characterized by FT-IR, XRD, and SEM to exhibit the phase and morphology. The results showed that, pure zirconia was produced with particles size of 53 nm and the crystal system was monoclinic when methanol was used as solvent in complexation process. While the particles size of zirconia with the same structure were significantly reduced to 25 nm, using MEG as solvent. This study demonstrates that the coordination compounds may be suitable precursors for the simple one-pot preparation of nano-scale metal oxides with different morphologies.


[1] M. Ranjbar, M. Nabitabar, Ö. Çelik, M. Yousefi, Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles, J. Iran. Chem. Soc. 12 (2015) 551-559.
[2] V. Safarifard, A. Morsali, Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers, Coord. Chem. Rev. 292 (2015) 1-14.
[5] A.Y. Robin, K.M. Fromm, Coordination polymer networks with O- and N-donors: what they are, why and how they are made, Coordin. Chem. Rev. 250 (2006) 2127-2157.
[6] T. Uemura, S. Kitagawa, Nanocrystals of coordination polymers, Chem. Lett. 34 (2005) 132-137.
[7] M. Tahmasebpour, A.A. Babaluo, M.K. Razavi Aghjeh, Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method, J. Eur. Ceram. Soc. 28 (2008) 773-778.
[8] S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature 404 (2000) 265-267.
[9] Y.W. Li, D.H. He, Z.X. Cheng, C.L. Su, J.R. Li, M.J. Zhu, Effect of calcium salts on isosynthesis over ZrO2 catalysts, Mol. Catal. A 175 (2001) 267-275.
[10] E.C. Subbarao, H.S. Maiti, Science and technology of zirconia, Adv. Ceram. 24 (1988) 731.
[11] Q. Zhang, J. Shen, J. Wang, G. Wu, L. Chen, Sol–gel derived ZrO2–SiO2 highly reflective coatings, Int. J. Inorg. Mater. 2 (2000) 319-323.
[12] P.K. Wright, A.G. Evans, Mechanisms governing the performance of thermal barrier coatings, Curr. Opin. Solid State Mater. Sci. 4 (1999) 255-265.
[13] C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials 20 (1999) 1-25.
[14] P. Salas, E.D. Rosa-Cruz, L.A. Diaz-Torres, V.M. Castano, R. Melendrez, M. Barboza-Flores, Monoclinic, ZrO2 as a broad spectral response thermoluminescence UV dosemeter, Radiat. Meas. 37 (2003) 187-190.
[15] P. Gao, L.J. Meng, M.P. dos Santos, V. Teixeira, M. Andritschky, Study of ZrO2–Y2O3 films prepared by rf magnetron reactive sputtering, Thin Solid Films 377 (2000) 32-36.
[16] N. Tayyebi Sabet Khomami, F. Heshmatpour, B. Neumuller, A novel dinuclear zirconium (IV) complex derived from [Zr(acac)4] and a pentadentate Schiff base ligand: Synthesis, characterization and catalytic performance in synthesis of indole derivatives, Inorg. Chem. Commun. 41 (2014) 14-18.
[17] M. Ranjbar, M. Lahooti, M. Yousefi, A. Malekzadeh, Sonochemical synthesis and characterization of nano-sized zirconium(IV) complex: new precursor for the preparation of pure monoclinic and tetragonal zirconia nanoparticles, J. Iran. Chem. Soc. 11 (2014) 1257-1264.
[18] M. Ranjbar, M. Yousefi, M. Lahooti, A. Malekzadeh, Preparation and characterization of tetragonal zirconium oxide nanocrystals from isophthalic acid-zirconium(IV) nanocomposite as a new precursor, Int. J. Nanosci. Nanotechnol. 8 (2012) 191-196.
[19] M. Salavati-Niasari, M. Dadkhah, M.R. Nourani, A. Amini Fazl, Synthesis and characterization of single-phase cubic ZrO2 spherical nanocrystals by decomposition route, J. Clust. Sci. 23 (2012) 1011-1017.
[20] J. H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (2010) 1039-1059.
[21] W. J. Son, J. Kim, J. Kim, W. S. Ahn, Sonochemical synthesis of MOF-5, Chem. Commun. (2008) 6336-6338.
[22] M. Ranjbar, M. Yousefi, Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nano-sized lanthanum(III) supramolecule as a novel precursor, J. Inorg. Organomet. Polym. 24 (2014) 652-655.
[23] M. Ranjbar, M. Yousefi, Facile preparation of zirconia nanostructures by new method: nano-scale zirconium (IV) coordination supramolecular compound as precursor, Iran. J. Sci. Technol. Trans. Sci. (2016). doi:10.1007/s40995-016-0069-9.
[24] M. Ranjbar, M. Yousefi, R. Nozari, S. Sheshmani, Synthesis and characterization of cadmium-thioacetamide nanocomposites using a facile sonochemical approach: a precursor for producing CdS nanoparticles via thermal decomposition, Int. J. Nanosci. Nanotechnol. 9 (2013) 203-212.
[25] M. Ranjbar, Ö. Çelik, S. H. Mahmoudi Najafi, S. Sheshmani, N. Akbari Mobarakeh, Synthesis of lead(II) minoxidil coordination polymer: a new precursor for lead(II) oxide and lead(II) hydroxyl bromide, J. Inorg. Organomet. Polym. 22 (2012) 837-844.
[26] M. Ranjbar, S.A. Mozaffari, E. Kouhestanian. H. Salar Amoli, Sonochemical synthesis and characterization of a Zn(II) supramolecule, bis(2,6 diaminopyridinium)bis(pyridine-2,6-dicarboxylato)zincate(II), as a novel precursor for the ZnO-based dye sensitizer solar cell, J. Photochem. Photobiol. A: Chem. 321 (2016) 110-121.
[27] M. Ranjbar, M. Yousefi, Sonochemical synthesis and characterization of a nano-sized lead (II) coordination polymer; a new precursor for the preparation of PbO nanoparticles, Int. J. Nanosci. Nanotechnol. 12 (2016) 109-118.
[28] A. Aslani, A. Morsali, M. Zeller, Dynamic crystal-to-crystal conversion of a 3D–3D coordination polymer by de- and re-hydration, Dalton Trans. 14 (2008) 5173-5177.
[29] M. Ranjbar, S. H. Mahmoudi Najafi, S. W. Ng, catena-Poly[lead(II)-[μ-2,4-di-amino-6-(piperidin-1-yl)pyrimidine N-oxide-κ2O:O]di-μ-iodido], Acta Cryst. E65 (2009) m749-m749.
[30] N. B. Date, A.G. Purohit, S. S. Pimple, P.D. Chaudhari, Formulation and evaluation of coated microneedles for the treatment of hairloss, Int. J. Res. Rev. Pharm. Appl. Sci. 4 (2014) 1083-1101.
[31] H. Klug, L. Alexander, X-Ray Diffraction Procedures, John Wiley and Sons, New York, 1962.
Volume 2, Issue 2
June 2016
Pages 69-77
  • Receive Date: 30 August 2016
  • Revise Date: 23 November 2016
  • Accept Date: 03 December 2016
  • First Publish Date: 03 December 2016